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Abstract

MEMS IMUs are readily available in quantity and have extraordinary advan-

tages over conventional IMUs in size, weight, cost, and power consumption. However,

the poor performance of MEMS IMUs limits their use in more demanding military

applications. It is desired to use multiple distributed MEMS IMUs to simulate the

performance of a single, more costly IMU, using the theory behind Gyro-Free IMUs.

A Gyro-Free IMU (GF-IMU) uses a configuration of accelerometers only to measure

the three accelerations and three angular rotations of a rigid body in 3-D space. The-

oretically, almost any configuration of six distributed accelerometers yields sufficient

measurements to solve for the translational and angular acceleration. In reality, how-

ever, sensor noise corrupts the measurements and good sensor geometry is necessary

to obtain an accurate estimate of the translational and angular accelerations. Deter-

mining the optimal configuration of accelerometers is an exercise in geometry. This

thesis investigates the optimal geometry of an INS constructed of multiple networked

IMUs and develops the accompanying mechanization and error equations. Simple

simulations are run to test and validate the basic design principles.
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Using Multiple MEMS IMUs to form a Distributed

Inertial Measurement Unit

I. Introduction

In the post-Cold War world, the general trend of developed nations has been

to maximize the effectiveness of a small, modern, professional military force while

minimizing that force’s logistical and maintenance costs. In addition, the emphasis in

the methodology of warfighting has increasingly focused on technological and infor-

mation superiority to achieve the military and political objectives of a conflict at the

lowest possible cost, particulary in personnel casualties and collateral damage. This

has led to an increased focus on precision guided munitions. Although conventional

military formations built around heavy armor are still necessary, recent actions in

Somalia (1994), Chechnya (1994-1996 and 1999-present), Afghanistan (2001-present),

and most recently Iraq (2003-present), have demonstrated that these formations are

poorly suited for the counter-insurgency and guerilla warfare which characterizes the

majority of modern conflicts. This new prevalent type of warfare requires mobile,

highly trained combined arms forces equipped with accurate weapons systems and

the ability to apply them quickly, precisely, and in varying levels of force. The in-

credible contrast between the area bombing of World War II, only 60 years ago, and

the surgical strikes by cruise missiles in the 2003 invasion of Iraq demonstrate the

power of this precision. The introduction of Unmanned Aerial Vehicles (UAVs) onto

the battlefield has also introduced the need for small, cheap inertial navigation units.

The development of the weapons systems for this new type of warfare is heavily

dependent on advances in guidance, navigation, and control, as well as the incorpo-

ration and protection of the Global Positioning System (GPS) and its signals. Of

increasing importance is the area of low-cost navigation and guidance systems for

munitions, UAVs, ballistic missiles, and manned aircraft. As inertial sensor and
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computational technology has advanced, the spectrum of available instruments and

implementation techniques has widened considerably. These advances have allowed

traditional large inertial measurement units mounted on gimbals to be supplanted

by smaller, cheaper, and more computationally intensive strapdown units as well as

more effective methods of aiding Inertial Navigation Systems (INS) by external means.

These developments, together with improvements in GPS and GPS/INS integration,

have led to drastically improved navigation and guidance performance at a much

smaller cost. This performance is now necessary for many weapons systems currently

in use or development that are heavily reliant on accurate navigation information.

The relatively recent marriage of small, cheap, low-grade inertial sensors with

GPS has had one of the largest and most visible impacts in the realm of military

technology. In the past, the excitement of watching laser-guided bombs striking air

vents was offset by their financial expense and the difficult and sometimes dangerous

requirement that the target be “painted” with a laser. The advent of weapons guided

by a GPS/INS combination, such as the Joint Direct Attack Munition or JDAM, has

revolutionized precision warfare by allowing a weapon to be guided by a combina-

tion of internal inertial sensors and GPS at a fraction of the cost and without the

optical difficulties and increased danger to the operating personnel associated with

laser-guided munitions. Overall, the performance and availability of inertial sensors

operating within an aided navigation system is now a direct limiting factor in the

ability of the Air Force to achieve precision engagement. Advances in inertial sen-

sor technology and aiding directly translate into improved battlefield capabilities for

America’s armed forces in all types of conflict.

1.1 Problem Definition

The addition of an inertial navigation unit into a weapons system carries a num-

ber of costs, including weight, additional power consumption, and volume, as well as

the increased financial cost related to acquisition and maintenance. One method of

reducing this cost is the replacement of a single, expensive inertial measurement sys-
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tem with a system made up of cheaper and more numerous inertial sensors which

can match or exceed the same performance. This can be accomplished through the

use of multiple distributed Micro-Electric Mechanical Systems (MEMS) IMUs, which

are easily many times cheaper than a conventional IMU. MEMS IMUs minimize all

of these costs; they are incredibly small, and can be batch produced in large quan-

tities very cheaply. MEMS IMUs are literally flooding the market and are currently

triggering a new revolution in inertial navigation, guidance, and control. By opti-

mally combining the measurements of multiple MEMS IMUs, it is possible to achieve

improved performance which mimics that of a single, more valuable system. It is

therefore necessary to determine the method of optimally combining these measure-

ments and then evaluate potential gains in performance.

1.2 Background to Research

The origin of this research was the Antenna Advanced Inertial Reference for

Enhanced Sensors (ANTARES) project, undertaken by AFRL/SNRP [1]. This project

was set up to investigate the possibility of emplacing MEMS IMUs at radar aperture

locations on aircraft. Inertial measurements from these IMUs can then be used to

help compensate for disturbances caused by motion and vibration in RF antennas,

specifically GPS and Electronic Support Measures (ESM) antennas, thus improving

the overall performance of these systems. It was suggested that these remote sensors

could also be used to aid the central INS, and the spinoff of that question led to the

motivation for this research.

1.3 Research Objectives

The immediate objective of this research is to establish a solid theoretical foun-

dation for aiding between IMUs using the concept of a Gyro-Free IMU [4]. Utilizing

this concept, a distributed configuration of accelerometers is used to determine full

information on aircraft motion in all six degrees of freedom. Therefore, emphasis will

be on designing a basic system that uses accelerometers to obtain full information on
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the translational and rotational acceleration of a rigid body. This system can then

be combined with gyroscope and other navigation measurements through the use of

a filter to produce the final optimal navigation estimate. This requires determining

the optimal geometry used to position the accelerometers and investigating the effects

of this geometry on the performance. Ultimately, optimality should include taking

into account the ability of the system to withstand sensor failures and continue op-

eration as well as provide the best possible navigation enhancement. However, this

research is limited to investigating only the latter, with sensor failure concerns left

for future research. The development of the GF-IMU concept, representing the main

body of the thesis, will then be followed by Matlab R© simulations of GF-IMU mecha-

nization, testing the impact of various accelerometer configurations and quality levels.

Finally, a description of a real-life system utilizing the accelerometer and gyroscope

measurements of multiple IMUs and relying on the previously developed theory will

be discussed in the final chapter.

1.4 Assumptions and Limitations

Due to time limitations, some restrictions were placed on the depth of research.

Only terrestrial navigation is considered, although most of the theory is also applicable

to extra-terrestrial navigation once changes are made to the gravity model. External

aiding of the INS, such as by GPS, is not considered as it is not necessary to the basic

theory.

A proper evaluation of the potential performance gains requires in-depth simu-

lations beyond the scope of this paper. Rudimentary simulations are run simply as a

proof-of-concept and investigation to validate the theory of geometric optimization.

They do not represent a full-scale system performance analysis. A full Kalman filter

implementation utilizing a detailed error model would be necessary to gain full infor-

mation on potential system performance. More complex and realistic simulations are

thus left to future work. Also, issues related to identifying and correcting for sensor

failure are temporarily ignored in this work but will need to be addressed by future
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research. Finally, an important absence is a full mathematical treatment of blending

gyro measurements into the GF-IMU concept. This will be discussed but not fleshed

out to the extent necessary for implementation. All of these and more are potential

subjects for future research built upon the groundwork laid here.

1.5 Thesis Overview

This first chapter has introduced the thesis topic. The second chapter will

provide background information on inertial sensors, MEMS technology, INS aiding,

and the Gyro-Free IMU concept. The third chapter will build the theory of a GF-IMU

and apply this theory to aiding between IMUs, resulting in usable design principles

along with mechanization and error equations. The fourth chapter will examine results

from simulations. The fifth chapter will summarize the results and their potential

impact as well as provide suggestions for future research.
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II. Literature Review

2.1 Inertial Navigation

Navigation is the art of planning, recording, and controlling the course and

position of a vehicle within a frame of reference. Inertial navigation is a subset of

“dead reckoning” navigation [27], in which position is calculated using the sum of

a previously determined “initial” position and the measured distance travelled. In

inertial navigation, that “distance travelled” is determined using inertial instruments

which measure the motion of the vehicle.

According to Newton’s first law of motion, an object at rest will remain at

rest unless acted upon by an external force. Inertial navigation works by measuring

and integrating these external forces over time in order to perform calculations to

determine the distance travelled from an initial reference point. Inertial navigation

thus gives a relative rather than absolute position, and its performance is limited to

the accuracy of the initial position information and the performance of the inertial

sensors used.

The greatest advantage of inertial navigation is its ability to operate completely

self-contained without any reliance on external radiation or fields. All other forms

of navigation are dependent on taking in external electromagnetic radiation, such

as light and radio waves, or measurements of the earth’s magnetic field, such as

by magnetic compass. Navigation relying upon external radiation is susceptible to

changes in conditions and to accidental or purposeful interference which may degrade

or destroy its effectiveness. Navigation using the earth’s magnetic field is imprecise

and susceptible to anomalies. From a military perspective, this independence makes

inertial navigation ideal for use in military vehicles and weapons. Because inertial

navigation requires no external signals, it is impossible to jam or otherwise deny. In

addition, it emits no radiation and is impossible to detect. It does not require any

human operator, it is not limited to operation within or without the atmosphere, it

is completely independent of weather, visibility, and terrain considerations, and, once

initialized, it can function automatically without requiring further information.
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The drawback of inertial navigation is primarily related to the limitations of

inertial sensors themselves. Inertial sensors, as they have so far been developed, yield

angular and linear rate and acceleration and measurements rather than direct mea-

surements of position and attitude as desired. It is therefore necessary to integrate

the measurements over time in order to determine the change in position and atti-

tude which can be summed to the initial value to determine the new vehicle position.

Imperfections in the inertial sensors and, in terrestrial navigation, the complexities of

correctly modelling the shape of the earth and its gravitational field produce indistin-

guishable errors that are also integrated over time so that the accuracy resulting from

an independently operating inertial navigation system degrades over time in what is

known as “drift”. The magnitude of this drift is dependent on the quality of the

inertial instruments used.

2.1.1 The Inertial Measurement Unit (IMU). The motion of a body ma-

neuvering in three dimensions can be completely described by six degrees of freedom:

linear acceleration along each axis and angular rotation about each axis. Therefore,

a mathematical system describing the kinematic motion of the body will have six un-

knowns and require at least six inputs to achieve a solution. A unit consisting of a set

of inertial sensors capable of completely measuring this motion is termed an Inertial

Measurement Unit, or IMU. A typical IMU is made up of three linear accelerometers

and three rate gyros, with each set arranged in an orthogonal triad. This type of IMU

is hereafter referred to as a “conventional IMU”.

Accelerometers use precise measurements of the motion of a proof mass to mea-

sure specific force, which is the sum of kinematic acceleration and gravitational force-

per-unit-mass. Accelerometers are unable to distinguish between these forces which

requires that the Inertial Navigation System estimate and remove gravity from the

measurements. Typically, an accelerometer senses specific force on one axis, termed

the “sensing axis”, so that three accelerometers are required in an IMU in order to

sense specific force in all three directions. The three accelerometers are normally
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aligned on orthogonal axes so that they form a triad. Accelerometer measurements

are integrated over time to determine the inertial distance travelled, but yield no

information on the direction travelled. As will be demonstrated later in Section 2.2,

accelerometers can also be positioned at a distance from the vehicle center of gravity

and used to measure the angular acceleration of the body

The rate gyroscopes used in conventional IMUs use a spinning mass or other

means such as laser/light radiation to measure angular rate about a single axis. By

aligning three gyros on orthogonal axes, an IMU can sense rotation in all directions.

Information from the IMU can thus be used to determine the facing, or attitude,

of the aircraft by integrating these rotations over time and summing them with an

initial estimated attitude. Imperfections and friction within the gyroscope causes

measurement errors which drift and tend to increase with time.

2.1.2 The Inertial Navigation System (INS). The sole function of an IMU

is to provide accurate inertial measurements. The INS processes these measurements

and uses the initial navigation state of the vehicle and a model of the earth and

its gravitational field to project the current navigation state, usually the location,

velocity, and attitude of the vehicle. The fundamental concept of an INS can be im-

plemented in various physical mechanizations and coordinate frames. The standard

coordinate frames used in this paper will now be described. They will be followed by

a description of common mechanizations, with an emphasis on strapdown mechaniza-

tion which is the most relative to this research’s theory.

2.1.3 Coordinate Reference Frames for Terrestrial Navigation. It is useful

to describe a vehicle’s position and attitude in multiple reference frames since this

allows for different convenient reference frames to be used at certain points in the

mechanization.

2.1.3.1 Earth Centered Inertial (ECI) Frame. All inertial measure-

ments measure motion relative to an inertial frame. The origin of the Earth Centered
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Inertial frame is located at the center of the earth with the z axis through the earth’s

axis of rotation and the x axis passes through the equator and is aligned to a fixed

point in space, the First Point of Aries. The y axis is orthogonal to the other two

axes. Inertial sensors measure motion with respect to the inertial frame, but it is not

very convenient for terrestrial navigation because it does not account for the shape

or rotation of the earth. The ECI frame is referenced with a lower case letter “i”.

2.1.3.2 Earth Centered Earth Fixed (ECEF) Frame. The Earth Cen-

tered Earth Fixed Frame (ECEF) is very similar to the ECI frame but rotates at the

same speed as the earth so that it remains fixed with respect to a point on the earth’s

surface, making it more useful for terrestrial navigation. The frame is centered on

the earth with the z axis through the axis of rotation, the x axis aligned with the

Greenwich Meridian, and the y axis orthogonal to complete the set. Translating co-

ordinates from the ECI frame to the ECEF frame is relatively simple, requiring only

one rotation about the z axis as a function of time to account for earth rotation. The

ECEF frame is referenced with a lower case letter “e”.

Figure 2.1: Illustration of the ECEF Frame

2.1.3.3 Navigation Frame. The Navigation frame measures locations

relative to the equator and the Greenwich Meridian using degrees latitude and lon-
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gitude with an altitude term defining the distance from the location to the earth’s

surface. The origin of the Navigation frame is located at the vehicle center of gravity.

This frame is the most commonly used for terrestrial navigation but requires more

complex transformations from the inertial frame. The Wander Azimuth frame, in

more common use, is similar to the Navigation frame but uses a wander azimuth an-

gle rotation to avoid mathematical singularities at high latitudes [21]. The Navigation

frame is referenced with a lower case letter “n”.

2.1.3.4 Body Frame. The Body frame is aligned so that its origin

is collocated with the center of gravity of the body of interest, such as an airframe,

with the z axis aligned vertically, the x axis aligned horizontally with the most likely

direction of motion, and the y axis orthogonal to the other two. The body frame

is only required if the sensors are attached directly to the body itself, such as in a

strapdown mechanization. The body frame moves and rotates with respect to the

other earth reference frames dependent on the motion of the body itself. The body

frame is referenced with a lower case letter “b”.

Figure 2.2: Illustration of the Body Frame
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2.1.4 Coordinate Transformations. There are several methods to accom-

plish coordinate transformations between reference frames. This paper will use the

Direction Cosine Matrix (DCM) method. A DCM can be computed as a product of

three rotation matrices, each of which represent a rotation about an individual axis.

The aircraft attitude is given by the vector of ordered Euler angle rotation angles

Ψ =


ψ

θ

φ

 =


Roll angle, relative to x axis

Pitch angle, relative to y axis

Yaw angle, relative to z axis


where the x,y, and z axes are those of the current reference frame. The rotation

matrices about each axis are

rotation about x axis: C1 =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ



rotation about y axis: C2 =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



rotation about z axis: C3 =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1


The total rotation matrix about all three axes is given by the product of all

three of these matrices, in 1-2-3 order, i.e. rotating about the z, then y, and then x

axis, can then be written:

C3·C2·C1 =


cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ


2-6



The resultant matrix is denoted Cy
x, where x represents the coordinate frame

given and y represents the coordinate frame desired. For example, if it is desired to

transform a vector rx coordinatized in the x frame to the y frame, the transformation

is accomplished as:

ry = Cy
x · rx

2.1.5 INS Mechanizations. Inertial Navigation Systems all operate using the

same basic principles but there are differing methods of physical implementation. The

INS mechanization refers to the physical configuration of the sensors relative to both

the vehicle body and the reference frame. The resulting mechanization equations are

differential equations describing the navigation states of interest, typically position,

velocity, and attitude, as functions of the inertial sensor outputs. The primary types of

physical implementation utilize either a stabilized platform or strapdown techniques,

both of which are briefly described here.

2.1.5.1 Stabilized Platform Mechanizations. A Space Stabilized (SS)

mechanization utilizes a platform stabilized with respect to inertial space [27]. Any

angular movement sensed by the inertial instruments for is accounted for and corrected

so that the platform remains stationary in the inertial frame. Using this mechaniza-

tion, all sensor inputs and navigation are resolved in the ECI frame.

A Local Level (LL) stabilized mechanization utilizes a platform stabilized with

respect to the surface of the earth. A Local Level mechanization has the advantage

that two of the three accelerometer sensing axes are parallel to the ground so that the

gravitational force component measured is present in only one accelerometer reading

if the platform is perfectly level.

Any type of stabilized platform mechanization incurs a tremendous amount

of additional cost. The addition of the gimballed platform and motors to maintain

the stabilization add a considerable amount of weight, power consumption, and size.

These systems are also more expensive to purchase and maintain and are more likely
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to break down due to their preponderance of moving parts. As such, these systems

have largely been relegated to expensive strategic applications such as ICBMs and

space systems.

2.1.5.2 Strapdown Mechanization. The vast majority of INS mecha-

nizations in current use are strapdown, in which the inertial sensors are rigidly fixed,

or “strapped” to the vehicle body [27]. This has numerous advantages over the sta-

bilized platform mechanizations, not least of which is a drastic decrease in size and

weight which allows the incorporation of an INS into very size-sensitive applications

such as small aircraft and munitions. The drawbacks of strapdown mechanization are

that resolving the measurements requires gyroscopes capable of measuring a much

higher rate of turn and a large increase in the overall computational complexity.

Of critical importance in a strapdown mechanization is the DCM describing the

transformation from the body frame to the reference frame, typically the Navigation or

ECEF frame. This DCM describes the attitude of the vehicle relative to that reference

frame and is propagated forward in time using the angular rate measurements.

2.1.5.3 INS Aiding. Although INS aiding is not a focus of this re-

search, it is worth briefly introducing as part of the larger context of the problem.

For a very in-depth study of aiding using Kalman Filtering, please see [12], [13], [14].

Even with an accurate initialization, INS errors cause the navigation solution

to drift away from the true values over time, depending on the quality of the sensors.

Therefore it is almost always necessary to aid the INS externally with other methods

of navigation to help minimize the effects of these errors. Numerous methods of INS-

aiding exist, although all are in some way dependent on external sources of radiation.

The most well-known is the Global Positioning System (GPS). Navigation by GPS

uses radio signals from satellites in space, the positions of which are precisely known,

to obtain a direct measurement of position. In addition, there are numerous methods

of navigation through the use of radar and radio signals reflecting off of or originating
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from the ground (such as Doppler or TACAN). Unfortunately, all methods involving

radio or radar waves are subject to atmospheric noise. In addition, hostile forces can

detect and/or actively interfere with these signals. Navigation by optical methods uses

light emitted by the stars or reflected off the ground to obtain attitude, position, or

velocity measurements (such as a star tracker stellar compass [24] or the use of optical

flow methodology [30]). Optical methods are dependent on weather and visibility,

while the star tracker requires the stars to be visible. Finally, magnetic navigation

uses the earth’s magnetic field to obtain navigation measurements; while it is obviously

difficult to deny, it is nonetheless dependent on an external field and can be degraded

by small- or large-scale magnetic anomalies.

GPS has become extremely popular as a navigation aid for INS because it

complements the INS error characteristics very well. GPS measurements are corrupted

by noise from a variety of sources, but since they translate directly to position, no

integration is necessary and the errors do not grow in time. However, the GPS

signal can be jammed or even spoofed, so GPS does have a weakness in military

applications which anticipate the possibility of operating in an electronic warfare

environment. Therefore, the anti-jam capability of a GPS or GPS/INS system is of

utmost importance to military applications. Overall, while an INS can yield very

precise data that drifts from the truth over time, GPS yields more noisy data that

is consistently accurate over time. Many military applications use a combination of

GPS and INS, but the effectiveness of these systems is partly dependent on the quality

of the INS, especially with respect to attitude which is very difficult to obtain from

GPS measurements.

2.2 The GF-IMU Concept

2.2.1 Introduction to the Concept. As previously stated, the motion of a

body maneuvering in three dimensions can be completely described by six degrees

of freedom: linear acceleration along each axis and angular rotation about each axis.

A conventional Inertial Measurement Unit (IMU) contains six sensors to measure
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these six unknowns: three collocated accelerometers and three gyroscopes, arranged

in orthogonal triads. However, it is also possible to use six or more distributed ac-

celerometers to form a system capable of measuring the three accelerations and three

angular accelerations, and thereby capable of functioning as an IMU; this system is

termed a “Gyro-Free IMU” (GF-IMU). An inertial navigation system which navi-

gates using measurements from one or more GF-IMUs is termed a Gyro-Free Inertial

Navigation System, or GF-INS.

Because of the greater mechanical complexity of gyroscopes, accelerometers are

generally smaller, more cost-effective, and use less power than gyros of a comparable

quality classification. Gyro-Free Inertial Navigation Systems also have the advantage

of completely avoiding having to account for the notorious gyro error characteristics.

This is all the more important when considering using MEMS inertial sensors since,

despite many advances, the incorporation of MEMS gyros represents a huge challenge

due to their poor performance [3]. Though development is continuing [9], they are not

expected to substantially improve in comparison to MEMS accelerometers anytime

soon [25]. The theory behind a GF-INS can also be applied to the use of multiple

distributed IMUs to obtain improved angular rate measurements.

The major downside of a GF-IMU, as well as any other system that uses ac-

celerometers to measure angular rate, is that only angular acceleration measurements

are directly available. Therefore, in a strap-down navigation mechanization an ad-

ditional integration is required to back out attitude, velocity, and position, leading

to errors which grow an order of magnitude faster than in a conventional IMU. This

makes the GF-IMU a “fast diverging system” and basically means that the GF-IMU

needs to be heavily aided before it can be of much use for navigation.

There is also a performance trade-off relating to the distances between ac-

celerometers, here termed “lever-arms”. Larger lever-arms are desired because they

increase the ratio of the measurement magnitude over the magnitude of the sensor er-

rors, but arm-lengths which are too large may be impractical or introduce flex modes
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which would add a new disturbance. Therefore a balance must be found between the

desire to increase the Signal-to-Noise Ratio (SNR) and realistic physical limitations

in the design and implementation of the GF-IMU. It is desired to maintain the rigid

body assumption, therefore the array size chosen must exhibit disturbances due to

flex modes that can be safely ignored given the precision desired out of the GF-IMU

system.

The discussion of lever-arms brings up a key distinction that must be made.

Larger accelerometer lever-arms increase the magnitude of the measurement for a

given angular acceleration, thus decreasing the ratio of the measurement noise in the

final signal. In effect, larger lever-arms increase the Signal-to-Noise Ratio of the sys-

tem. The arrangement, or geometry, of the accelerometer configuration has a similar

but separate effect. Good geometry increases the observability of linear and angu-

lar accelerations, while bad geometry can make the variables poorly observable or

even unobservable. It can be safely assumed that the designer of any system using ac-

celerometers to measure angular acceleration will attempt to optimize performance by

utilizing the largest lever-arms feasible without introducing significant disturbances.

Therefore, the optimal accelerometer configuration geometry can be normalized and

considered as an entirely separate issue, which is the subject of this research. The

focus then becomes enhancing the observability of the measurements through the use

of geometry.

2.2.2 Previous Work. The concept of using distributed accelerometers con-

figured to function as a gyroscope-free IMU is at least 30 years old [19], and the

concept of using accelerometers to measure rotational acceleration is even older [22].

It has long been known that six accelerometers could yield full information on the

3-D acceleration and rotation of a rigid body. Since a rigid body has six degrees of

freedom, and therefore six unknowns, it makes sense that at least six sensor inputs

are necessary. Initially, however, it was believed that nine sensors were needed [4].

In 1994, an optimal cube-like configuration of six distributed accelerometers was de-
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veloped by DeBra that allows rotational acceleration to be directly calculated as a

function of the accelerometer outputs [4].

Some of the most recent and significant research into GF-IMUs has been done for

the California PATH program by Chin-Woo Tan and Sungsu Park at the University

of California, Berkeley. For the full body of this previous work see [20], [26], and [25].

Their research has developed the criteria for a feasible GF-IMU geometry as well a

basic set of equations to relate the accelerometer outputs to the linear and angular

accelerations of the moving body. In addition, they have developed a set of error

equations encompassing sensor and misalignment errors, conducted basic simulations,

and constructed a prototype.

The California PATH program research has been limited to a single configu-

ration, with an emphasis on land navigation aided by GPS. Their approach simply

assumes a given geometry and then derives the necessary equations. In contrast, this

thesis represents a similar but separate and more methodical approach to GF-IMU

theory than previous work by developing a new way to mathematically describe and

evaluate GF-IMU configurations. The mechanization and error equations can then be

derived more efficiently through the use of this new methodology, with an emphasis

on the increased complexity of navigation in three dimensions.

2.3 MEMS Inertial Technology

2.3.1 Brief Introduction. MEMS is an acronym for “Micro Electronic Me-

chanical Systems”, and is synonymous with the terms Microsystems (Europe) and

Micromachines (Japan). The term dates back to a series of workshops on micrody-

namics and MEMS in 1987 [16] which helped spark the first major development. The

field of MEMS inertial devices has become very successful in the automotive industry,

with millions of MEMS accelerometers sold each year; other MEMS inertial sensor

applications such as the aerospace industry have picked up more more recently, but

are entering into a period of rapid growth [16].
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In 1993, sales of all types of MEMS were less than $2 billion; by 2000, MEMS

sales had risen to over $12 billion. [16] Revenues from MEMS gyros sales alone are

projected to grow from $279 million in 2002 to $396 million in 2007 [2]. Sales are

skyrocketing as MEMS inertial sensors are replacing larger conventional sensors or

are being used in new applications for which the use of larger conventional sensors

is previously impractical. The automotive market, the avionics market, and various

military applications continue to drive demand, which in turn encourages continued

development at a rapid pace. Small Times, a public news source that follows MEMS

and nanotechnology development, reports that as of February, 2004, “10 of the top

12 IMU suppliers are either currently offering or actively developing MEMS gyro-

based IMUs. And of the more than five-dozen IMUs available, or known to be in

development, nearly 50 percent use (or will use) both MEMS gyros and MEMS ac-

celerometers.” [2]. Since MEMS devices can be mass produced on wafers, and use

a fraction of the power and space of a more conventional inertial sensor, the mar-

ketability of MEMS devices is primarily limited by their capabilities which, thanks

to tireless research and development, are improving at a fast rate. As another author

put it more simply, MEMS are “application driven and technology limited” [16]

2.3.2 Military Incentive. One of the primary factors driving MEMS develop-

ment in the inertial realm is the prospect of military contracts. As their performance

improves, MEMS devices are becoming attractive for an increasing number of mili-

tary applications, where their small size, low cost, and low power consumption make

them ideal in munitions and other small, inexpensive systems. A quick overview of

military projects working to incorporate MEMS sensors indicates the large amounts

of contract money becoming available for successful MEMS IMU manufacturers:

2.3.2.1 DIG/NU. DIG/NU stands for “Deeply Integrated Guidance

and Navigation Unit”, and is a program to develop a deeply (ultra-tight) coupled

GPS/INS system that fits within five cubic inches utilizing MEMS technology. The

resultant device could accurately guide a projectile with the precision of GPS, while
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deep integration with a MEMS INS allows for vastly increased anti-jam and loss of lock

capability. The GPS and INS systems would be able to share a single processor [10].

2.3.2.2 Army/Marine Corps: Excalibur. The Excalibur (XM982)

program aims to develop a 155 mm artillery shell for current and future Army and

Marine howitzers utilizing a GPS/INS guidance system with the ability to strike

targets 50 km away with a 20m CEP. The Excalibur will function in current US

digital howitzers and will also be an integral part of the larger Army concept of a

non-line-of-sight cannon (NLOS-C), one of the core elements of the Army Future

Force. Development of reliable, gun-hardened MEMS GPS/INS units will yield a

direct firepower advantage to US ground forces while reducing logistics demand and

collateral damage through improved efficiency of targeting [29].

2.3.2.3 OAV. Another core element of the Army Future Force, de-

signed to help give US troops information superiority, is the Organic Aerial Vehicle, a

small UAV designed to operate on the squad and platoon level (two separate versions

are planned) and flying using ducted air fans. Because it will have the capacity to

“hover and stare”, the OAV will give Army commanders a literal eye in the sky to

scout out enemy dispositions and gain valuable intelligence on what lies ahead. In

this type of vertical/horizontal flight, accurate inertial information about attitude and

speed are critical, but the small size of the vehicle limits the weight and power con-

sumption of any inertial units. Thus a perfect application for a high quality MEMS

IMU [7].

2.3.2.4 Navy: ERGM. The Navy Extended Range Guided Munition

(EX-171) program seeks to develop a 5” GPS/INS guided gun round for accurate naval

bombardment and gunfire support of ground forces. The goal is a projectile with a

range of 41 nm and a CEP of less than 20 m, utilizing the GPS/INS combination to

obtain the maximum anti-jam capability. This technology will be a critical part of

the Navy’s surface warship development [6].
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2.4 Conclusion

This completes the literature review and introduction of topics. The importance

and possible benefits of the research have been outlined, and the topics of inertial

navigation, Gyro-Free IMUs, and MEMS inertial technology have been introduced.

The development of the theory for a Gyro-Free strapdown mechanization in the ECEF

reference frame will now follow.
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III. Methodology

3.1 Measuring Angular Acceleration using Accelerometers

An accelerometer is a sensor designed to measure specific force, f , along a

sensitive (input) axis - also referred to as a Specific Force Receiver (SFR). The specific

force is the sum of the kinematic acceleration, a, and the gravitational acceleration,

g:

f = a− g (3.1)

In inertial navigation, one is interested in the kinematic acceleration a, so the accel-

eration due to gravity, g, must be “subtracted from” the measured specific force f .

Thus,

a = f + g (3.2)

The gravitational acceleration to be removed is calculated from the vehicle’s estimated

position. Inaccurate accounting for gravity is the source of many error dynamics in

an IMU, but can be safely ignored during the initial theoretical development of the

GF-IMU, because it can be safely presumed that it is properly accounted for by the

INS.

Consider an inertial frame within which exists a body frame; i.e., the body

frame can move and rotate within the inertial frame but points in the body frame

will remain stationary relative to each other. Let a be the kinematic acceleration of

the origin of the body frame, ω be the inertial angular rate of the rigid body, and ri

be the location of a point i in the body frame, for i = 1, 2, . . . , N . The acceleration of

point i is ai. The inertial acceleration of the point i is given by the Coriolis formula:

ai = a+ ω̇ × ri + ω × (ω × ri) (3.3)

According to (3.1) the specific force sensed at point i is

ai = a+ ω̇ × ri + ω × (ω × ri)− g (3.4)
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and the reading yi of a single-axis accelerometer at location i with input axis orien-

tation di in the body frame is given by the fundamental equation:

yi = di · a+ (ω̇ × ri) · di + [ω × (ω × ri)] · di − di · g (3.5)

We will use the skew symmetric form of ω, Ω, and the skew symmetric form of ri, Ri.

Ω =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



Ri =


0 −riz riy

riz 0 −rix

−riy rix 0


Applying these to Equation (3.4) yields

di · (ω̇ × ri) = −dT
i ·Riω̇ (3.6)

[ω × (ω × ri)] · di = dT
i ·Ω2ri (3.7)

Inserting Equations (3.6) and (3.7) into Equation (3.4), the fundamental equation can

be rewritten as:

yi = a · di − dT
i Riω̇ + dT

i Ω2ri − di · g (3.8)

Calculating these terms yields the explicit expression:

dT
i Riω̇ = dT

i


0 −rzi

ryi

rzi
0 −rxi

−ryi
rxi

0



ω̇x

ω̇y

ω̇z

 (3.9)
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and

dT
i Ω2ri = dT

i


ωxωyryi

+ ωxωzrzi
− (ω2

y + ω2
z)rxi

ωxωyrxi
+ ωyωzrzi

− (ω2
x + ω2

z)ryi

ωxωzrxi
+ ωyωzryi

− (ω2
x + ω2

y)ryi

 (3.10)

Given this development, it is a simple matter to insert the values for ri and di

pertaining to each accelerometer location and orientation for a specific configuration,

and thus form a set of linear equations which relate the inertial acceleration a of

the origin of the body frame and the angular acceleration ω̇ of the body to the N

accelerometer outputs (y1, y2, ..., yN).

3.2 Geometry Optimality Criteria and Calculations

The mathematical criteria for selecting an optimal accelerometer arrangement

can now be discussed. The rigid body state is described by its angular and transla-

tional accelerations, ω̇ and a. Suppose N accelerometers are used. By stacking up

Equation (3.8) N times, a linear system in ω̇ and a is obtained. In matrix notation,

y = Hθ +


dT

1 Ω2r1
...

dT
NΩ2rN

+


dT

1

...

dT
N

 · g (3.11)

where the vector of unknowns is

θ =

(
ω̇

a

)
6×1

the measurement vector is

y =


y1

...

yN


N×1
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and the regressor matrix H is defined by the individual locations and orientations of

the accelerometers making up the GF-IMU as follows:

H =


(r1 × d1)

T ... dT
1

...
...

...

(rN × dN)T ... dT
N


N×6

(3.12)

3.2.1 Regressor Matrix Condition Number and Dilution of Precision. Solv-

ing a system of linear equations involves inverting the H matrix. If the matrix is

poorly conditioned, measurement errors are magnified in the output. Using the ex-

ample from [15] to make the point, consider the linear system Hθ = z:

1 1000

0 1

θ1

θ2

 =

1000

1


The solution, easily found, is θ1 = 0 and θ2 = 1. Now consider the same system again,

this time adding a small error in the measurement vector z.1 1000

0 1

θ1

θ2

 =

 1000

1 + δz


The solution now yields θ1 = −1000δz and θ2 = 1 + δz. The error in the input vector

relative to the magnitude of the input vector is δz
1000

while the relative error in the

output is 1000δz. Thus, solving the system of equations amplifies the relative error

(the inverse of the SNR) by a maximum factor of 106, that is, by the condition number

κ of the H matrix [15]. The condition number is defined as

κ(H) =‖ H ‖‖ H−1 ‖ (3.13)
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Indeed, assuming that the matrix H is error free, the magnitude of the error in

the output is always bounded according to:

‖∆θ‖
‖θ‖

≤ κ(H)
‖∆z‖
‖z‖

(3.14)

In GPS, the Geometric Dilution of Precision (GDOP) concept relates the effect

of geometry on the accuracy of an estimate when noisy pseudo-range measurements

are used. The GDOP term, defined as

GDOP (H) ,
√
Tr (HTH)−1 (3.15)

can also be employed here. Two additional DOP values are defined, using the parti-

tions of the H matrix pertaining to the vector quantities ω̇ and a: The H matrix can

be broken up as

H =
[
Hω̇3×N

... Ha3×N

]
and the two new DOP values can then be defined as

ω̇DOP =

√
Tr (HT

ω̇Hω̇)
−1

(3.16)

aDOP =

√
Tr (HT

a Ha)
−1 (3.17)

(3.18)

These new DOP values give some measure of the effectiveness of the GF-IMU geome-

try in measuring the linear and angular accelerations, in which smaller values indicate

better measurements. These DOP values assume full knowledge of the other variable;

that is, (3.16) is the DOP value for a assuming full knowledge of ω̇, and (3.17) is the

DOP value for ω̇ assuming full knowledge of a.

In summary, the effect of configuration geometry on the accuracy of the acceler-

ation and angular acceleration estimates is captured by the GDOP or, alternatively,

as the condition number of the regressor matrix H [18]. The condition number is
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directly proportional to the maximum amplification of the measurement error. The

DOP metrics are closely related to the respective acceleration and angular acceler-

ation estimation error covariances. Thus the goal of the configuration optimization

is to minimize the condition number of this matrix, κ(H), as well as the three DOP

metrics. This allows for a “scoring” process which can be used to compare individual

configurations against each other. Together, these four criteria can be used as individ-

ual metrics to estimate the predicted effectiveness of a given geometric accelerometer

arrangements.

3.2.2 Normalizing to the Unit Sphere. A crucial step before invoking the

κ(H) or GDOP optimality criteria is nondimensionalization. Without this step, the

resulting metrics values would be skewed by the size of the array. Instead, it is desired

to observe the effect of the geometry alone, while temporarily ignoring lever-arms.

Therefore, the acceleration a is scaled according to

a→ a

L

where L is a characteristic length, that is, L is the radius of the sphere circumscribing

the accelerometer array so that a and ω̇ now have the same units of
[

1
sec2

]
. In the

same manner, each ri is scaled as follows

ri =
ri

L

As a result the R matrix is normalized so that the vectors describing the accelerome-

ter locations are unit vectors. This ensures that all the accelerometer locations fall on

or inside the surface of a unit sphere centered at the origin. After the nondimension-

alization, the condition number and GDOP of the regressor matrix H are constant

regardless of the accelerometer lever-arms used, that is, the size of the accelerometer

cluster, allowing us to predict the effectiveness of the GF-IMU geometry independent

of the array size.
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3.3 Symmetry and Optimality

It is observed throughout many engineering disciplines and through the study

of nature that symmetry and optimality are closely related. The exact origin of this

has been the subject of much scientific study, and has philosophical and physiological

flavors in addition to mathematical and scientific. For example, studies have shown

that the human perception of beauty is closely related to symmetry [5]. Studies in

optimality of packaging, aerodynamics, and structural engineering (amid numerous

other examples) almost always yield a symmetrical optimal configuration. The solu-

tion to the problem of optimally positioning accelerometers in a GF-IMU can thus be

rather safely postulated to be a symmetrical configuration.

3.3.1 The Platonic Solids. If the optimal accelerometer configuration is to

be symmetric about all three axes, then the five Platonic solids present themselves as

the key to the solution. The Platonic solids are formed by joining together regular

polygons (2-D convex figures with equal angles and sides of equal length) to form three

dimensional solids. These solids represent the only perfectly symmetrical positioning

of points in three dimensional space [28], and thus can be postulated as the ideal

method of positioning accelerometers in a GF-IMU. The most basic regular polygon

is a triangle; by joining three triangles at each vertex, a tetrahedron is formed, with

four faces and resembling a pyramid.

By joining four triangles at each vertex the octahedron is formed, with eight

faces and resembling two pyramids joined at their base and pointing in opposite

directions.
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By joining five triangles at each vertex, the icosahedron is formed, with 20 faces.

The square is the next regular polygon, and by joining three squares to each

vertex the cube is created, with 6 faces.

Finally, the regular pentagon, with an internal angle of 108o, is the last regular

polygon which can be used to construct a three dimensional solid. By joining three

pentagons to each vertex, the dodecahedron is formed, with 12 faces.

Additional Platonic solids cannot be constructed. Six triangles may be joined

at each vertex, but the result forms a plane rather than a solid. More than three

squares or pentagons joined at a vertex also fails to form a three dimensional solid.

The hexagon, the next regular polygon, cannot be used to create a three dimensional

solid. Thus, the set of Platonic solids is limited to the five previously defined (this

has been proven many times; for one example, see [17]).

The Platonic solids and some of their geometric properties are listed in Ta-

ble 3.3.1. A symmetric array of accelerometers aligned using one of these solids could

be positioned according to the location of the vertices, the centers of the sides, or

the centers of the faces. Thus there are six total configurations that can be directly

derived from the Platonic solids, for arrays of 6, 8, 12, 20, and 30 accelerometers.

Arrays with an identical number of points, such as the vertices of the tetrahedron and
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the faces of the cube (both with six), yield identical configurations. So, a GF-IMU

using the minimum number 6 accelerometers could, for example, be based on the

geometry of cube faces, tetrahedron edges, or octahedron vertices.

Solid Vertices Edges Faces

Tetrahedron 4 6 4
Cube 8 12 6
Octahedron 6 12 8
Dodecahedron 20 30 12
Icosahedron 12 30 20

Table 3.1: The Platonic Solids

The Platonic solids can be inscribed into spheres, termed “Platonic Spheres”

[17]. Therefore, we refer to a GF-IMU based on the geometry of a Platonic solid as

an Inertial Reference Sphere (IRS).

3.3.2 Accelerometer Orientation. Determining the optimal locations (ri)

for the accelerometers is only the first step in defining a GF-IMU geometry. In

addition, the orientation of the individual accelerometers (di) must be specified. One

methodology involves grouping the accelerometers into pairs and aligning the pairs

so that the overall configuration can sense angular rotation about each axis, as in the

cube configurations in Figures 3.1 and 3.2.

3.3.3 Hamiltonian Circuits. The problem can also be approached using the

concept of Hamiltonian circuits from graph theory. A graph consists of a set of vertices

connected by edges, while a Hamiltonian circuit is a closed loop path that travels along

the edges of a graph and touches each vertex exactly one time. Applying this concept

to the problem of aligning accelerometers in a GF-IMU, each accelerometer is located

at a vertex and oriented so that its sensitive axis points along an edge towards the next

accelerometer in the Hamiltonian path. The idea is to apply a systematic approach to

aligning accelerometers that may help shed light on the characteristics of the optimal

geometry for a GF-IMU.
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In a loose application of this concept, any accelerometer can be pointed toward

any other accelerometer, so that N accelerometers yield (N − 1)! possible configura-

tions (i.e. for six accelerometers there are 120 configurations to consider). However,

by definition, a Hamiltonian path only travels along the defined edges of the Platonic

solid, yielding a smaller number of possible configurations (32 for the six-accelerometer

case). If isomorphic paths are lumped together, then the number of distinct Hamil-

tonian paths is further reduced, to 4 for the six-accelerometer case. It is important

to note that there is no particular guarantee of optimality through the use of this

concept, but it does present a systematic way of examining a large set of possibilities

for orientation which may contribute to understanding the geometric characteristics

that contribute to optimality. The use of Hamiltonian paths to align accelerometers

in a GF-IMU is therefore further explored in Section 3.4.3.

3.4 Six-Accelerometer GF-IMU Configurations

In this research the investigation is first limited to configurations of 6 accelerom-

eters, the minimum amount needed to obtain full information on motion with six

degrees of freedom. A configuration using more than 6 accelerometers would be

overdetermined, which would improve accuracy and, with additional effort, reliabil-

ity. Nine-accelerometer configurations will be examined later in this research. It

should be kept in mind that all six-accelerometer configurations have been normal-

ized to a unit scale and that the accelerometer locations of each are in fact identical.

That is, different shapes represent different rotations of a single perfectly symmetrical

array of six points. Thus, the use of different Platonic solids used to identify different

six-accelerometer configurations (i.e. the cube, tetrahedron, etc.) are for description

and graphical purposes only; in actuality, they all represent the same accelerometer

locations rotated in 3-D space. This is not true of the accelerometer alignments,

which vary with each geometry.
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3.4.1 Cube Configurations. The first two configurations considered are here

referred to as cube configurations. These configurations display symmetry in both

their accelerometer locations and orientations. Accelerometers are placed on the faces

of a cube and aligned in pairs so that each pair measures angular rotation about a

different body axis. Thus the total configuration can easily measure rotations in all

three axes. In the first cube configuration, accelerometers are located at the center

of the faces of the cube and aligned with the edges of the cube shown in Figure 3.1.

This configuration is described by the R and D matrices

Figure 3.1: Cube Configuration #1

R =


1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1



D =


0 0 0 0 1 −1

1 −1 0 0 0 0

0 0 1 −1 0 0
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and is shown in Figure 3.1. The R matrix is constructed by the N individual r row

vectors describing the locations of each accelerometer. The D matrix is similarly

constructed by the N individual row vectors describing the alignment of each ac-

celerometer. The regressor matrix H which describes the linear system used to solve

for the unknowns is thus:

H =


(r1 × d1)

T ... dT
1

...
...

...

(rN × dN)T ... dT
N

 =



0 0 1 0 1 0

0 0 1 0 −1 0

1 0 0 0 0 1

1 0 0 0 0 −1

0 1 0 1 0 0

0 1 0 −1 0 0


This configuration scores as follows:

κ(H) GDOP ω̇DOP aDOP

1.000 1.7321 1.2247 1.2247

A second cube configuration, proposed by DeBra in [4], locates the accelerometers on

the face of a cube and aligns them toward the vertices, i.e. at a 45 degree slant from

the body axes, as shown in Figure 3.2.

R and D are now:

R =


1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1



D =
1√
2


0 0 −1 1 1 1

1 1 0 0 −1 1

−1 1 1 1 0 0



3-12



Figure 3.2: Cube Configuration #2

The regressor matrix H is thus:

H =
1√
2


r1 × d1

... dT
1

...
...

...

rN × dN
... dT

N

 =



0 1 1 0 1 −1

0 1 −1 0 1 1

1 0 1 −1 0 1

−1 0 1 1 0 1

1 1 0 1 −1 0

1 −1 0 1 1 0


This configuration is scored as follows:

κ(H) GDOP ω̇DOP aDOP

1.000 1.7321 1.2247 1.2247

Thus, the two cube configurations are equally symmetrical and score identically.

3.4.2 Tetrahedron Configuration. The third configuration considered is

based on the 6 edges of a tetrahedron, but is normalized so that the scale of the

configuration is identical to that of the previous cube configurations. An accelerom-
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Figure 3.3: Tetrahedron Configuration

eter is placed at the midpoint of each edge, with the sensitive axes aligned along the

edges as shown in the diagram.

R =



2√
6

1√
6

1√
6
− 1√

6
− 1√

6
− 2√

6

0 − 1√
2

1√
2
− 1√

2
1√
2

0

− 1√
3

1√
3

1√
3
− 1√

3
− 1√

3
1√
3



D =


0 − 1

2
√

3
1

2
√

3
−
√

3
2

√
3

2
− 1√

3

−1 1
2

1
2

1
2

1
2

0

0 2√
6

− 2√
6

0 0 − 2√
6


The accelerometer positions in R are normalized to the same magnitude as the cube

configurations above. This configuration scores as follows:

κ(H) GDOP ω̇DOP aDOP

1.4142 3.0000 2.4495 1.7321
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Figure 3.4: Sample Hamiltonian Path: 1 → 4 → 3 → 2 → 6 → 5

3.4.3 Hamiltonian Path Configurations. Another possible six-accelerometer

configuration places accelerometers at the vertices of an octahedron. The normalized

locations are:

r1,2,3,4,5,6 =


0

0

1

 ,


0

1

0

 ,


1

0

0

 ,


0

−1

0

 ,


−1

0

0

 ,


0

0

−1


The sensing directions can then be determined through the use of the concept of

Hamiltonian paths in graph theory. A path can be defined using a six - element

vector, with each accelerometer pointing towards the next one in the list, and the

last pointing back to the first to complete the circuit (see Figure 3.4). Using this

method, there are 5! (or 120) total configurations possible, 32 of which are true

Hamiltonian paths which only travel along the defined edges of the octahedron, (i.e.,

accelerometer 6 cannot point toward accelerometer 1). By grouping isomorphic paths,

there are only four fundamental paths. Without loss of generality, all paths can be

assumed to originate at accelerometer 1. One set of paths are those which touch

accelerometer 6 as the third point, and a second set are those which touch it at the

5th point. The remaining two sets touch accelerometer 6 on the 4th point and are
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differentiated by whether the 3rd and 5th points are adjacent or diagonal. The results

of scoring these four fundamental paths is as follows:

Fundamental set of paths κ(H) GDOP ω̇ aDOP

Touches Accel. 6 as 3rd point ∞ ∞ 1.7321 1.354
Touches Accel. 6 as 4th point, points 3 and 5 adjacent 2.000 2.2913 1.7321 1.5
Touches Accel. 6 as 4th point, points 3 and 5 diagonal ∞ ∞ 1.7321 1.354
Touches Accel. 6 as 5th point ∞ ∞ 1.7321 1.354

Table 3.2: Hamiltonian Path Configurations Calculation Results

The results show that only one family of paths produces a useful H matrix.

Since all paths are based on an identical R matrix, the difference lies in the D matrix

that the path produces. The D matrices that produce working regressor matrices

all share a common property in that each accelerometer is mirrored by an opposite

accelerometer that senses acceleration in the same plane at an opposite angle, similar

to the DeBra cube in Figure 3.2. The difference is that the DeBra cube ensures that

the sensing direction of each accelerometer is fully orthogonal to the accelerometer’s

location vector. In configurations built on a Hamiltonian path, this is not possible,

since the sensing direction vector is always 45o off of the accelerometer position vector.

Therefore a configuration built on a Hamiltonian path with the limitations listed here

cannot score higher than an H matrix condition number of 2.000. Thus Hamiltonian

paths are not an optimal way to align a GF-IMU, but can help illustrate some desirable

properties.

3.5 Nine-Accelerometer GF-IMU Configurations

The same theory can be extended to the case of 9 distributed accelerometers.

The resulting H matrix will be 9×6 with a rank of 6. This is a prelude to the analysis

of 3 IMUs, each containing a triad of three collocated accelerometers.

3.5.1 Ideal Cube Extension. This configuration is formed by adding a triad

of accelerometers at the origin of a the standard 6 accelerometer cube configuration,
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with its three orthogonal sensing directions pointing down each of the axes of the

body frame. It has the advantage of being highly symmetrical. The result is shown

in Figure 3.5. The configuration is defined by:

Figure 3.5: 9 Accelerometer Configuration with Triad at Center

R =


1 −1 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0

0 0 0 0 1 −1 0 0 0



D =


0 0 0 0 1 −1 1 0 0

1 −1 0 0 0 0 0 1 0

0 0 1 −1 1 0 0 0 1



3-17



The resultant H matrix is:

H =



0 0 1 0 1 0

0 0 1 0 −1 0

1 0 0 0 0 1

1 0 0 0 0 −1

0 1 0 1 0 0

0 1 0 −1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


The configuration scores as follows:

κ(H) GDOP ω̇DOP aDOP

1.2247 1.5811 1.2247 1.000

It can be seen that the regressor matrix pertaining to this configuration has a larger

condition number and smaller GDOP than the original 6-accelerometer cube con-

figuration. The higher condition number is due to the location of the triad at the

origin, which yields no arm length and reduces the measurement efficiency, while the

lower GDOP and aDOP are due to the improved translational acceleration measure-

ment through the addition of an accelerometer on each axis. Note that the ω̇ term

is unchanged; the triad at the origin has no arm length and therefore contributes no

angular acceleration measurement. Adding a triad to the center of the second cube

configuration has an identical effect.

3.5.2 Nine Distributed Accelerometers. A configuration utilizing 9 dis-

tributed accelerometers as shown in Figure 3.6 is positioned using the vertices and

center of a cube so that acceleration in each body frame axis is measured by 3 ac-
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Figure 3.6: 9 Accelerometer Configuration

celerometers. The R matrix of the configuration is:

R =
1√
3


1 1 1 −1 1 −1 −1 −1 0

1 1 −1 1 −1 1 −1 −1 0

1 −1 1 1 −1 −1 1 −1 0


And the D matrix will is:

D =


−1 0 0 0 −1 0 0 0 1

0 0 −1 0 0 −1 1 0 0

0 1 0 −1 0 0 0 1 0
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The regressor H matrix is then:

H =



0 − 1√
3

1√
3

−1 0 0

1√
3

− 1√
3

0 0 0 1

1√
3

0 − 1√
3

0 −1 0

− 1√
3
− 1√

3
0 0 0 −1

0 − 1√
3
− 1√

3
−1 0 0

− 1√
3

0 1√
3

0 −1 0

− 1√
3

0 − 1√
3

0 1 0

− 1√
3

1√
3

0 0 0 1

0 0 0 1 0 0


The configuration scores as follows:

κ(H) GDOP ω̇DOP aDOP

2.618 1.9706 1.4745 1.000

3.5.3 Three-IMU Configuration. We now consider a nine-accelerometer ar-

ray made up of three accelerometer triads, as would typically be found in 3 distributed

IMUs. The optimal positioning of these triads can be reduced to positioning on a plane

since three points are always collocated on a plane. The triads can be positioned as

on the circumference of a circle with radius 1, equally spaced from each other and

from the origin. The triads are aligned with the body axes, so that the z axis is

perpendicular to the plane. This yields a configuration as shown in Figure 3.7, which

displays symmetry. Using the previously defined method of scoring configurations,
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Figure 3.7: 3 Accelerometer Triads

the R,D, and H matrices pertaining to this symmetric arrangement are:

R =


0 0 0 −

√
3

2
−
√

3
2

−
√

3
2

√
3

2

√
3

2

√
3

2

1 1 1 −1
2

−1
2

−1
2

−1
2
−1

2
−1

2

0 0 0 0 0 0 0 0 0



D =


1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1
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As a result, the regressor matrix H is calculated as

H =



0 0 −1 1 0 0

0 0 0 0 1 0

1 0 0 0 0 1

0 0 1
2

1 0 0

0 0 −
√

3
2

0 1 0

−1
2

√
3

2
0 0 0 1

0 0 1
2

1 0 0

0 0
√

3
2

0 1 0

−1
2
−
√

3
2

0 0 0 1


Running the standard calculations with this H matrix produces the following score:

κ(H GDOP ω̇DOP aDOP

1.4142 1.6330 1.2910 1.000

3.5.4 Summary of Configurations.

# Accel. Configuration Condition Number GDOP ω̇DOP aDOP

6 Straight Cube 1.000 1.7321 1.2247 1.2247
6 Slant Cube 1.000 1.7321 1.2247 1.2247
6 Tetrahedron 1.4142 3.0000 2.4495 1.7321

9 Modified Straight Cube 1.2247 1.5811 1.2247 1.000
9 Distributed 2.618 1.9706 1.4745 1.000
9 Three Triads 1.4142 1.6330 1.2910 1.000

Table 3.3: Results of Configuration Calculations
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This table summarizes the results of the calculations for varying GF-IMU con-

figurations. The condition number term shows the theoretical geometric degree of

optimality of different potential GF-IMU configurations. It does not by any means

indicate the overall supremacy of any configuration, since it does not take into account

other restrictions such as the physical space available to implement the GF-IMU array

or the accelerometer types or amounts available. The DOP indicates the estimated

performance due to geometry but is subject to certain limitations, as described in

Section 3.2.1.

3.6 GF-IMU Mechanization Equations

Because of the uniqueness of the GF-IMU concept, it is necessary to start from

scratch in the development of the mechanization. Conventional IMU mechanizations

do not apply, and previously derived GF-IMU mechanizations are limited to a spe-

cific geometry. In a standard conventional INS there are 9 navigation states: three

position states, three velocity states, and three attitude states. In a GF-IMU, an-

gular acceleration is measured instead of angular rate; therefore, three angular rate

states are added for a total of 12 navigation states. The mechanization equations for

a GF-IMU in the ECEF frame are now developed.

Define the constant matrices Aω̇ and Aa,
Aω̇3×N

. . .

Aa3×N

 , (HTH)−1HT
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and the ω-dependent vectors representing the effect of the non-linearity term N(ω)

defined in Section 3.1, 
fω̇(ω

(b)
ib )

. . .

fa(ω
(b)
ib )

 , (HTH)−1HTN(ω
(b)
ib )

=


Aω̇

. . .

Aa

 ·N(ω
(b)
ib )

Note that when H is non-singular and six accelerometers are used (N = 6),

(HTH)−1H = H−1 (3.19)

Using the definitions from above, after inversion we obtain the two equations

ω̇
(b)
ib = −fω̇(ω

(b)
ib ) + Aω̇ ·D · g(b)(r) + Aω̇ · Z (3.20)

a(b) = −fa(ω
(b)
ib ) + Aa ·D · g(b)(r) + Aa · Z (3.21)

where g(b)(r) is the gravitational acceleration calculated as a function of r, the position

of the aircraft in the ECEF frame. Equation (3.20) is a differential equation which is

integrated to yield ω
(b)
ib . The ω

(b)
ib term is then used in Equation (3.21), which gives

the rectilinear acceleration vector.

We now desire to derive the differential equation which can be used to propagate

forward the Body to ECEF DCM, Ce
b. We know that

ωib = ωie + ωeb (3.22)

and therefore

ω
(b)
ib = Cb

eω
(e)
ie + ω

(b)
eb (3.23)
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We will now apply the first of several mathematical arguments, also known as a

Lemmas:

Lemma 1

The skew-symmetric form of a vector which undergoes a coordinate transfor-

mation from the ECEF frame to the body frame,

v(b) = Cb
ev

(e)

is

V(b) = Cb
eV

(e)Ce
b

�

Using a similarity transformation to obtain the skew symmetric form of ω
(b)
ie =

Cb
eω

(e)
ie , we have

Ω
(b)
eb = Ω

(b)
ib −Cb

eΩ
(e)
ie Ce

b (3.24)

Therefore, since

Ċe
b = Ce

bΩ
(b)
eb

we can write

Ċe
b = Ce

b

(
Ω

(b)
ib −Cb

eΩ
(e)
ie Ce

b

)
= Ce

bΩ
(b)
ib −Ω

(e)
ie Ce

b (3.25)

The Earth angular rate in the ECEF frame is

ω
(e)
ie = ΩE


0

0

1
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where ΩE is approximately 15o an hour. Therefore,

Ω
(e)
ie = ΩE


0 −1 0

1 0 0

0 0 0


and

Ċe
b = Ce

bΩ
(b)
ib + ΩE


0 1 0

−1 0 0

0 0 0

Ce
b (3.26)

The mechanization equations for navigating in the ECEF frame can now be written.

The subscript c designates a calculated variable. Equation (3.20) gives

ω̇
(b)
ibc

= −fω̇(ω
(b)
ibc

) + Aω̇ ·D ·Cb
ec
· g(e)(r(e)

c ) + Aω̇ · Z

and Equation (3.26) gives

Ċe
bc

= Ce
bc
Ω

(b)
ibc

+ ΩE


0 1 0

−1 0 0

0 0 0

 ·Ce
bc

The Coriolis formula and Equation (3.21) yields

v̇
(e)
ebc

= Ce
bc
· [−fa(ω

(b)
ibc

) + Aa ·D ·Cb
ec
· g(e)(r(e)

c ) + Aa · Z]

− 2ΩE


0 −1 0

1 0 0

0 0 0

 · v(e)
ebc
− ω

(e)
ie × [ω

(e)
ie × r(e)

c ]

Finally

ṙ(e)
c = v

(e)
ebc
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Assuming that the aircraft is initially at rest, the initial conditions are given by

Ce
bc

(0) = Ce
b0

ω
(b)
ibc

(0) = Cb
e0
· ω(e)

ie

v
(b)
eb (0) = 0

r(e)(0) = r
(e)
0

We note that

−ω(e)
ie × [ω

(e)
ie × r(e)

c ] = Ω2
E


1 0 0

0 1 0

0 0 0

 · r(e)
c

and

ω
(b)
ibc

(0) = ΩE(Ce
b0

)T ·


0

0

1


The mechanization equations in the ECEF reference frame for a GF-IMU can now be

written in their final form. These equations replace the standard IMU mechanization

equations used in conventional INS and represents a new contribution to the GF-IMU

concept.
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ω̇
(b)
ibc

= −fω̇(ω
(b)
ibc

) + Aω̇ ·D ·Cb
ec
· g(e)(r(e)

c ) + Aω̇ · Z, ω
(b)
ibc

(0) = ΩE(Ce
b0

)T


0

0

1


(3.27)

Ċe
bc

= Ce
bc
Ω

(b)
ibc

+ ΩE


0 1 0

−1 0 0

0 0 0

 ·Ce
bc
, Ce

bc
(0) = Ce

b0
(3.28)

v̇
(e)
ebc

= Ce
bc
· [−fa(ω

(b)
ibc

) + Aa ·D ·Cb
ec
· g(e)(r(e)

c ) + Aa · Z]

+ 2ΩE


0 1 0

−1 0 0

0 0 0

 · v(e)
ebc

+ Ω2
E


1 0 0

0 1 0

0 0 0

 · r(e)
c , v

(b)
eb (0) = 0 (3.29)

ṙ(e)
c = v

(e)
ebc
, r(e)(0) = r

(e)
0 (3.30)

Note that the specific force measurement vector Z enters the mechanization

equations linearly. Hence, when the simple Euler integration scheme for the mech-

anization equations is employed, one can directly use the ∆v output of digital ac-

celerometers and solve for the states as:

x(k) = x(k − 1) + ẋ(k) ∗∆t (3.31)

where ẋ(k) is calculated by inserting the ∆v outputs of the accelerometers into the

mechanization equations.
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3.7 Error Equations Development

We now desire to derive the navigation state error equations for a GF-IMU,

which are necessary for the implementation of GF-IMU aiding. The navigation state

is denoted by x and the input to the mechanization equations, consisting of the

measurements, is denoted by u.

3.7.1 Conventional INS Case. It is first useful to review the development

of error equations in a conventional INS before moving on to develop error equations

for a GF-INS. In a conventional INS, the navigation state vector x consists of three

position variables, three velocity variables, and three attitude angles. The attitude

“vector” is denoted by Ψ , [ψ θ φ]T where ψ, θ, and φ are the (3,2,1) yaw, pitch,

and roll Euler angles, respectively. The measurements of a conventional IMU are the

specific force components and the angular rate vector. Thus,

x =


r(e)

v(e)

Ψ


9×1

, u =

f (b)

ω
(b)
ib


6×1

,

The kinematics equations relate the navigation state to the specific force and angular

rate vectors

ẋ = f(x, u)

The measurement um is the sum of the true measurement u and the measurement

error δu. The equation is

um = u+ δu (3.32)

An INS mechanization consists of solving for the calculated navigation states xc by

integrating the kinematics ODE in real-time, which in turn is driven by the input

vector um. Departing from the kinematics equations, the mechanization equations

are written as:

ẋc = f(xc, um), xc(0) = xc0 , 0 ≤ t,
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where the initial navigation state xc0 is determined during the INS initialization/alignment.

The error in the navigation state estimate xc produced by the INS is

δx , xc − x

where x is the true navigation state.

To obtain the “error equations”, the kinematics function f is expanded to first

order

f(x, u) = f(xc, um) +
∂f

∂x

∣∣∣∣
xc,um

· (x− xc) +
∂f

∂u

∣∣∣∣
xc,um

· (u− um)− c (3.33)

= f(xc, um)− A · δx− Γ · δu− c (3.34)

where c is the remainder in the Taylor series expansion, and the Jacobians are denoted

as:

A ,
∂f

∂x

∣∣∣∣
xc,um

Γ ,
∂f

∂u

∣∣∣∣
xc,um

Both A and Γ are trajectory-dependent and therefore time-dependent.

We now embark on the development of the error equations.

δẋ = ẋc − ẋ

= f(xc, um)− f(x, u)

= f(xc, um)− f(xc, um) + A · δx+ Γδu+ c

= Aδx+ Γδu+ c

In addition,

δx(0) = xc(0)− x(0)
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and

xc(0) = xc0

where xc0 is chosen so that

xc0 = E(x(0))

Indeed, after the INS initialization and alignment, we have

x(0) ∼ N (xc0 , P0) (3.35)

and thus

δx(0) ∼ N (0, P0) (3.36)

Therefore, the navigation state error dynamics are described by the linear stochastic

differential equation

δẋ = A(t) · δx+ Γ(t)δu+ c, δx(0) ∼ N (0, P0)

Thus, if we assume the measurement errors are zero-mean and if we neglect the

truncation error caused by linearization, c, then the best estimate δx̂ ≡ 0 and therefore

the best navigation state estimate is x̂ = xc. The use of the mechanization equations

is thus justified, since the calculated xc is the best estimate of the navigation state

x. The predicted error in the navigation state estimate xc provided by the INS has a

covariance of P (t) where P (t) is the solution of the Lyapunov equation

Ṗ = AP + PAT + ΓQΓT , P(0) = P0, 0 ≤ t (3.37)

Q is the intensity of the zero-mean measurement error δu.

3.7.2 GF-INS Case. A GF-INS has an augmented navigation state vec-

tor comprising 12 variables and includes the aircraft’s angular rate in addition to

the standard 9 navigation states of a conventional INS. The input vector u consists
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of the N accelerometer measurements and its dimension is equal to the number of

accelerometers used. Thus,

x =



rx

ry

rz

vx

vy

vz

ψ

θ

φ

ωibx

ωiby

ωibz



, u =


y1

...

yN



We will partition the navigation state vector into two separate vectors,

x =


x1

. . .

x2


where x1 consists of the angular and rectilinear velocity state components and x2

consists of the attitude and position states. Thus,

x1 =

ω(b)
ib

v
(e)
eb

 , x2 =

 Ψ

r(e)


By breaking up the state vector we can break up and simplify the process of deriving

the state error equations. Recall that the information in the attitude vector Ψ is

contained in the Cb
e DCM. Both x1 and x2 have dimension 6. For navigation purposes,
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we are interested in v̇eb, but we measure and calculate the linear acceleration a. By

the Coriolis equation which relates v̇eb to a, Equation (3.4), we now have

v̇
(e)
eb = Ce

ba
(b) + Ω2

E


1 0 0

0 1 0

0 0 0

 r(e) − 2ΩE


0 −1 0

1 0 0

0 0 0

 v(e)
eb (3.38)

By rearranging the above equation, we have

a(b) = Cb
ev̇

(e)
eb − Ω2

ECb
e


1 0 0

0 1 0

0 0 0

 r(e) + 2ΩECb
e


0 −1 0

1 0 0

0 0 0

 v(e)
eb (3.39)

Given the output vector u (remember, u ≡ um − δu), the clean variables satisfy

u = H

ω̇(b)
ib

a(b)

+N(ω
(b)
ib )−D · g(b) (3.40)

Hence, in a GF-IMU the kinematics equations are obtained in descriptor form (a

differential equation in which the derivative term on the left side is premultiplied by

a term made containing variables) as

Eẋ1 = f1(x1, x2) + u

ẋ2 = f2(x1, x2)

where the full rank matrix

EN×6 , HN×6 ·

I 0

0 Cb
e(t)


6×6

(3.41)

In order to integrate the kinematics equations, one must first isolate ẋ1, and for this

one must “invert” the descriptor matrix E(t).
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The GF-IMU geometry optimization criteria can now be validated as regards

the matrix E. It is valuable to note that the following proposition holds:

Proposition 1

κ(E(t)) = κ(H) = constant for all time

and

Tr((ET (t)E(t))−1) = Tr((HTH)−1)

Proof

ET (t)E(t) =

I 0

0 CbT

e (t)

HTH

I 0

0 Cb
e(t)


=

I 0

0 Cb
e(t)

−1 (
HTH

)I 0

0 Cb
e(t)


Hence, the matrices ET (t)E(t) and HTH are similar. Therefore the spectra of ET (t)E(t)

and HTH are identical, which yields κ(E(t)) = κ(H). In addition, the inverses of sim-

ilar matrices are also similar, so that

Trace((ET (t)E(t))−1) = Trace((HTH)−1) (3.42)

�

The result is that minimizing κ(H) is equivalent to minimizing κ(E(t)), and

the same applies to the minimization of the GDOP associated with the H and E

matrices. This validates the choice of the GF-IMU geometry optimization criteria

used in Chapter 3.
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Returning to the issue of inverting E, since E(t) is full rank for all time t, the

following holds

ẋ1 = E✝ · f1(x1, x2) + E✝u (3.43)

ẋ2 = f2(x1, x2) (3.44)

where the generalized inverse of the descriptor matrix, E✝, is calculated as

E✝ = (ETE)−1ET (3.45)

=

I 0

0 CbT

e (t)

 (HTH)−1HT (3.46)

Rewriting the above equations as mechanization equations,

ẋ1c = E✝ · f1(x1c , x2c) + E✝um (3.47)

ẋ2c = f2(x1c , x2c) (3.48)

where um ≡ Z. Thus,

ẋ1c =

I 0

0 CbT

e (t)

 (HTH)−1HT · f1(x1c , x2c) +

I 0

0 CbT

e (t)

 (HTH)−1HTZ (3.49)

ẋ2c = f2(x1c , x2c), (3.50)

that is,

ẋ1c =

 Aω̇

. . . . . . . . .
Ce

bc
(t)Aa

 f1(x1c , x2c) +

 Aω̇

. . . . . . . . .
Ce

bc
(t)Aa

Z (3.51)

ẋ2c = f2(x1c , x2c) (3.52)
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We note that in the GF-IMU case, the kinematic equations are linear in the forcing

signal Z. After linearization, we realize that the state error δx1 is forced by the

measurement noise E✝δu. Now, the covariance of E✝δu is given by

Q = E(E✝δu · (E✝δu)T )

= E(E✝δu · δuTE✝T

)

= E✝ · E(δu · δuT ) · E✝T

We know that

E(δu · δuT ) = σ2I6

Therefore, we calculate

Q = σ2 · E✝ · E✝T

= σ2(ETE)−1 · ET · E · (ETE)−1

= σ2(ET · E)−1

= σ2

I 0

0 Cb
e(t)

 (HTH)−1

I 0

0 Ce
b(t)


So, by Proposition 1,

Tr(Q) = Tr(HTH)−1.

Hence, minimizing the trace of (HTH)−1 enhances performance by minimizing

the effect of the measurement noise strength Q.

Therefore, similar to the conventional INS case, the mechanization equations

have been validated as providing the best estimate of the true navigation state. In

addition, this development justifies the optimization of the geometric configuration

of the GF-IMU through minimizing GDOP (H) and κ(H), since the impact of the

measurement error δu on x1 is minimized.
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It is worth briefly comparing the conventional INS mechanization equations with

those of the GF-INS. The GF-INS mechanization equations are more complex due to

several factors:

1. A GF-INS has 12 navigation states, while a conventional INS has only 9.

2. The kinematics equation of the GF-INS are in descriptor form and the measure-

ment noise is amplified by the regressor matrix H.

3. Unlike a conventional INS for which attitude calculations are independent of

gravity, gravitational acceleration enters into the angular rate equation of a

GF-INS and consequently error in the gravity field information affects the cal-

culated/estimated attitude.

4. At the same time, the GF-IMU kinematics are linear in the forcing function u,

which simplifies the analysis of the stochastic error equations.

3.8 Error Equations for GF-IMU

The navigation state error equations for the GF-IMU equations will now be

derived from the GF-IMU mechanization equations, beginning with the attitude error

equation. We will start with the error in the DCM, δCe
b, and proceed to derive the

error equation that can be used to propagate the attitude error term δΨ

3.8.1 Attitude Error Equation. The attitude kinematics, as given by Equa-

tion (3.25), are

Ċe
b = Ce

bΩ
(b)
ib −Ω

(e)
ie Ce

b

Inserting error terms, it can be seen that the error term δΩ
(b)
ib causes the error δCe

b in

the Ce
b DCM. Indeed,

Ċe
b + δĊe

b = (Ce
b + δCe

b)(Ω
(b)
ib + δΩ

(b)
ib )−Ω

(e)
ie (Ce

b + δCe
b) (3.53)
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Using Equation (3.25) and solving for δĊe
b, we have

δĊe
b = Ce

b · δΩ
(b)
ib + δCe

b ·Ω
(b)
ib + δCe

b · δΩ
(b)
ib −Ω

(e)
ie · δCe

b (3.54)

We now define

δΨ , −δCe
b ·Cb

e

Note that, to first order (ignoring products of error terms), the matrix δΨ is skew-

symmetric. Therefore, since Ce
b specifies the aircraft attitude, and δΨ is the attitude

error in vector form, one is justified to consider δΨ the attitude error in skew sym-

metric form. We can define the error in the DCM as

δCe
b = −δΨ ·Ce

b (3.55)

Differentiating this equation yields

δĊe
b = −δΨ̇Ce

b − δΨĊe
b (3.56)

Inserting Equation (3.25), we have

δĊe
b = −δΨ̇Ce

b − δΨCe
bΩ

(b)
ib + δΨΩ

(e)
ie Ce

b (3.57)

We now equate Equations (3.54) and (3.57) to obtain

−δΨ̇Ce
b − δΨCe

bΩ
(b)
ib + δΨΩ

(e)
ie Ce

b = Ce
bδΩ

(b)
ib + δCe

bΩ
(b)
ib + δCe

bδΩ
(b)
ib −Ω

(e)
ie δC

e
b (3.58)
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Solving this for δΨ̇ and applying Lemma 1 we obtain the desired error equation form,

which we simplify as follows:

δΨ̇ = −δΨCe
bΩ

(b)
ib Cb

e + δΨ ·Ω(e)
ie −Ce

bδΩ
(b)
ib Cb

e − δCe
bΩ

(b)
ib Cb

e − δCe
bδΩ

(b)
ib Cb

e + Ω
(e)
ie δC

e
bC

b
e

= δΨ(Ω
(e)
ie −Ce

bΩ
(b)
ib Cb

e)−Ce
bδΩ

(b)
ib Cb

e − δCe
bΩ

(b)
ib Cb

e − δCe
bδΩ

(b)
ib Cb

e + Ω
(e)
ie δC

e
bC

b
e

= δΨ(Ω
(e)
ie −Ω

(e)
ib )−Ce

bδΩ
(b)
ib Cb

e − δCe
bΩ

(b)
ib Cb

e − δCe
bδΩ

(b)
ib Cb

e + Ω
(e)
ie δC

e
bC

b
e

(3.59)

Inserting Equation (3.55) into the above equation, again using Lemma 1, we can

simplify:

δΨ̇ = δΨ(Ω
(e)
ie −Ω

(e)
ib )−Ce

bδΩ
(b)
ib Cb

e + δΨΩ
(e)
ib −Ω

(e)
ie δΨ + δΨδΩ

(e)
ib

= δΨ(Ω
(e)
ie −Ω

(e)
ib + Ω

(e)
ib )−Ce

bδΩ
(b)
ib Cb

e −Ω
(e)
ie δΨ + δΨδΩ

(e)
ib (3.60)

where δΨ · δΩ(e)
ib is a higher order term that is ignored. After further simplification

of Equation (3.60), we have

δΨ̇ = δΨΩ
(e)
ie −Ω

(e)
ie δΨ− δΩ

(e)
ib (3.61)

Note that, according to Lemma 1, Ω
(e)
ib = Ce

bΩ
(b)
ib Cb

e and therefore δΩ
(e)
ib = Ce

bδΩ
(b)
ib Cb

e.

We now revert back to vector notation, using

Lemma 2

(Ab)× = AB−BA

�

We have now derived the attitude error differential equation, which is driven by the

error in the angular rate measurements. The final attitude error equation is
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δΨ̇ = −Ω
(e)
ie δΨ−Ce

bδω
(b)
ib (3.62)

3.8.2 Angular Rate Error Equation. We now set about deriving the angu-

lar rate error equations. We begin by inserting error terms into the mechanization

Equation (3.27):

δω̇
(b)
ib = − ∂fω̇

∂ω
(b)
ib

∣∣∣∣∣
ω

(b)
ibc

δω
(b)
ib +Aω̇DδC

b
eg

(e)(r(e)
c )+Aω̇D Cb

ec

∂g(e)

∂r(e)

∣∣∣∣
r
(e)
c

δr(e)+Aω̇δu (3.63)

where
∂fω̇

∂ω
= Aω̇

∂N(ω
(b)
ib )

∂ω
(b)
ib

(3.64)

We now desire to simplify this equation into a more usable form, so we take the

following steps to arrive at the final error equation. Inserting Equation (3.64) into

Equation (3.63), we obtain

δω̇
(b)
ib = Aω̇

[
−∂N(ω

(b)
ib )

∂ω
(b)
ib

δω
(b)
ib + DδCb

eg
(e)(r(e)

c ) + DCb
ec

∂g(e)

∂r(e)
δr(e) + δu

]
(3.65)

We know that

δCe
b = −δΨ ·Ce

b (3.66)

We need δCb
e, so we proceed as follows:

(Ce
b + δCe

b) · (Cb
e + δCb

e) = I

⇒

Ce
b · δCb

e ≈ −δCe
b ·Cb

e

⇒

δCb
e ≈ −Cb

eδC
e
bC

b
e
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Using Equation (3.66) yields,

δCb
e ≈ −Cb

e · (−δΨ ·Ce
b) ·Cb

e (3.67)

Therefore we have

δCb
e ≈ Cb

e · δΨ (3.68)

Inserting Equation (3.68) into Equation (3.65), we obtain the angular rate error equa-

tion

δω̇
(b)
ib = Aω̇

− ∂N(ω
(b)
ib )

∂ω
(b)
ib

∣∣∣∣∣
ω

(b)
ib

· δω(b)
ib + D ·Cb

ec
·

(
δΨ · g(e)(r(e)

c ) +
∂g(e)

∂r(e)

∣∣∣∣
r
(e)
c

· δr(e)

)
+ δu


(3.69)

Hence, since

δΨ · g(e)(r(e)
c ) = −g(e)(r(e)

c )× δΨ

δω̇
(b)
ib = Aω̇

− ∂N(ω
(b)
ib )

∂ω
(b)
ib

∣∣∣∣∣
ω

(b)
ib

δω
(b)
ib + DCb

ec

(
−g(e)(r(e)

c )× δΨ +
∂g(e)

∂r(e)

∣∣∣∣
r
(e)
c

δr(e)

)
+ δu


(3.70)

3.8.3 Velocity and Position Error Equations. We now turn to the v̇
(e)
eb

equation, Equation (3.29). We will follow the same process as in the two previous

sections, in which error terms are inserted into the mechanization equation and then

the resulting error equation is simplified into a usable form. Therefore we begin by

inserting error terms to this equation as previous done, and then remove the products
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of error terms in order to linearize the v̇
(e)
eb differential equation and obtain

δv̇
(e)
eb = Ce

bc

− ∂fa

∂ω
(b)
ib

∣∣∣∣∣
ω

(b)
ib

δω
(b)
ib + AaDCb

ec

∂g(e)

∂r(e)

∣∣∣∣
r
(e)
c

δr(e) + AaDδC
b
eg

(e)(r(e)
c ) + Aaδu



+δCe
b

[
−fa(ω

(b)
ibc

) + AaDCb
ec
g(e)(r(e)

c ) + Aaum

]
−2ΩE


0 −1 0

1 0 0

0 0 0

 δv(e)
eb +Ω2

E


1 0 0

0 1 0

0 0 0

 δr(e)

(3.71)

Since

fa = Aa ·N(ω
(b)
ib ),

∂fa

∂ω
(b)
ib

= Aa ·
∂N(ω

(b)
ib )

∂ω
(b)
ib

, substituting these expressions into Equation (3.71) we now have

δv̇
(e)
eb = Ce

bc
Aa

− ∂N(ω
(b)
ib )

∂ω
(b)
ib

∣∣∣∣∣
ω

(b)
ib

δω
(b)
ib + DCb

ec

∂g(e)

∂r(e)

∣∣∣∣
r
(e)
c

δr(e) + DδCb
eg

(e)(r(e)
c ) + δu



+δCe
bAa

[
−N(ω

(b)
ib ) + DCb

ec
g(e)(r(e)

c ) + um

]
+2ΩE


0 1 0

−1 0 0

0 0 0

 δv(e)
eb +Ω2

E


1 0 0

0 1 0

0 0 0

 δr(e)

(3.72)

We know

δCb
e = Cb

e · δΨ,

δCe
b = −δΨ ·Ce

b
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These expressions can be inserted into Equation (3.72) to obtain

δv̇
(e)
eb = Ce

bc
Aa

− ∂N(ω
(b)
ib )

∂ω
(b)
ib

∣∣∣∣∣
ω

(b)
ib

δω
(b)
ib + DCb

ec

∂g(e)

∂r(e)

∣∣∣∣
r
(e)
c

δr(e) + DCb
eδΨg

(e)(r(e)
c ) + δu



−δΨCe
bAa·

[
−N(ω

(b)
ib ) + DCb

ec
g(e)(r(e)

c ) + um

]
+2ΩE


0 1 0

−1 0 0

0 0 0

 δv(e)
eb +Ω2

E


1 0 0

0 1 0

0 0 0

 δr(e)

(3.73)

This can be rearranged as

δv̇
(e)
eb =

Ω2
E


1 0 0

0 1 0

0 0 0

+ Ce
bc
AaDCb

ec

∂g(e)

∂r(e)

∣∣∣∣
r
(e)
c

 δr(e) + 2ΩE ·


0 1 0

−1 0 0

0 0 0

 δv(e)
eb

+
[
(Ce

bc
AaDCb

ec
g(e)(r(e)

c ))×−Ce
bc
AaDCb

ec
(g(e)(r(e)

c ))×+(Ce
bc
Aaum)×

]
· δΨ

− (Ce
bc
AaN(ω

(b)
ibc

))× ·δΨ−Ce
bc
Aa

∂N

∂ω
(b)
ibc

∣∣∣∣∣
ω

(b)
ibc

δω
(b)
ib + Ce

bc
Aaδu (3.74)

where the notation a× denotes the skew symmetric matrix form of the vector a, i.e.,

a× = A.

Using the matrix Lemma 2,

(Ce
bc
AaDCb

ec
g(e)(r(e)

c ))× = CbcAaDCb
ec

(g(e)(r(e)
c ))×−(g(e)(r(e)

c ))× ·C(e)
bc

AaDCb
ec

(3.75)

Inserting Equation (3.75) into Equation (3.74) we obtain
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δv̇
(e)
eb =

Ω2
E


1 0 0

0 1 0

0 0 0

+ Ce
bc
AaDCb

ec

∂g(e)

∂r(e)

∣∣∣∣
r
(e)
c

 δr(e)

+ 2ΩE


0 1 0

−1 0 0

0 0 0

 δv(e)
eb +

[
−(g(e)(r(e)

c ))× ·C(e)
bc

AaDCb
ec

+ (Ce
bc
Aaum)×

]
δΨ

− (Ce
bc
·Aa ·N(ω

(b)
ibc

))× ·δΨ−Ce
bc
·Aa ·

∂N

∂ω
(b)
ibc

∣∣∣∣∣
ω

(b)
ibc

· δω(b)
ib + C

(e)
bc
·Aa · δu (3.76)

Gravity is calculated using the non-linear κ-filter as

g(e) = − µ

rκ
a · r

(3−κ)
c

·


r
(e)
x

r
(e)
y

r
(e)
z

 (3.77)

where

rc =

√
r
(e)2
x + r

(e)2
y + r

(e)2
z (3.78)

and ra is determined from the barometric altitude, if available. If barometric altitude

readings are not available, kappa is set to 0.

Since we are interested in the error equations, the j2 term, gravity anomaly, and

deflections of the vertical are not considered. The error in the computed gravitational

field is caused by the error in the computed position, δr(e), and the error in the

measured barometric altitude, δha. It can be written as

δg(e) =
µκ

rκ+1
a r3−κ

c

r(e)
c δha +

µ · (3− κ)

rκ
ar

5−κ
c

r(e)
e r(e)T

c δr(e)
c − µ

rκ
ar

3−κ
c

δr(e)
c

=
µ

rκ
ar

3−κ
c

[
κ

ra

r(e)
e δha + (3− κ)

1

r2
c

r(e)
c r(e)T

c δr(e)
c − δr(e)

c

]
(3.79)
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The following matrix lemma is now used.

Lemma 3 Let

A = a× and B = b×,

then

A ·B·c = aT · c · b− bT · a · c

�

Thus

r(e) · r(e)T · δr(e)
c = r(e)T · r(e) · δr(e)

c + R(e) ·R(e) · δr(e)
c

where R(e) = r(e)×. The error in computed gravity can be written as

δg(e) =
µ

rκ
a · r3−κ

c

·
[
κ

ra

· r(e)
c · δha + (2− κ) · δr(e)

c + (3− κ) · 1

r2
c

· (R(e))2 · δr(e)
c

]
(3.80)

This δg(e) term replaces the ∂g(e)

∂r(e)

∣∣∣
r
(e)
c

· δr(e) term in the δv̇
(e)
eb equation (and also in the

δω̇
(b)
ib Equation (3.71), to obtain

δv̇
(e)
eb =

µ

rκ
ar

3−κ
c

Ce
bc
AaDCb

ec

[
(3− κ)

1

r2
c

(R(e))2 + (2− κ)I

]
δr(e)

+ Ω2
E


1 0 0

0 1 0

0 0 0

 δr(e) + 2ΩE


0 1 0

−1 0 0

0 0 0

 δv(e)
eb

+
[
(−g(e)(r(e)

c ; ra, rc))× ·Ce
bc
AaDCb

ec
+ (C

(e)
bc

Aaum)×
]
δΨ

− (Ce
bc
Aa ·D(ω

(b)
ibc

))× δΨ−Ce
bc
Aa

∂N

∂ω
(b)
ib

∣∣∣∣∣
ωibc

δω
(b)
ib + Ce

bc
Aaδu

+
µκ

rκ+1
a r3−κ

c

C
(e)
bc

AaDCb
ec
r(e)
c δha (3.81)
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Assuming barometric altitude readings are available (which is typically the case in

aeronautical applications) and choosing κ = 2, the final δv̇
(e)
eb error equation is

δv̇
(e)
eb =

µ

r2
arc

Ce
bc
AaDCb

ec

 1

r2
c

(R(e))2 + Ω2
E


1 0 0

0 1 0

0 0 0


 · δr(e)

+ 2ΩE ·


0 1 0

−1 0 0

0 0 0

 δv(e)
eb +

[
−(g(e)(r(e)

c ; ra, rc))× ·Ce
bc
AaDCb

ec
+ (C

(e)
bc

Aaum)×
]
δΨ

− (Ce
bc
AaN(ω

(b)
ibc

))× δΨ−Ce
bc
Aa

∂N

∂ω
(b)
ib

∣∣∣∣∣
ωibc

δω
(b)
ib + Ce

bc
Aaδu

+
2µ

r3
arc

C
(e)
bc

AaDCb
ec
r(e)
c δha (3.82)

Note that µ = 398600km3sec−2 is the gravitational constant of Earth and that
(

∂N
∂ω

)
is the following function of ω:

(
∂N

∂ω
(ω)

)
i

= dT
i ·


ωyryi

+ ωzrzi
ωxryi

− 2ωyrxi
ωxrzi

− 2ωzrxi

ωyrxi
− 2ωxryi

ωxrxi
+ ωzrzi

ωyrzi
− 2ωzryi

ωzrxi
− 2ωxrzi

ωzryi
− 2ωyrzi

ωxrxi + ωyryi

 (3.83)

i = 1, . . . , N

Finally, the position error is governed by the simple equation

δṙ(e) = δv
(e)
eb (3.84)

The error equations allow one to set up the Lyapunov matrix differential equa-

tion, the solution of which yields the predicted covariance of the error in the navigation

3-46



states provided by the GF-IMU. One can then predict the performance of the GF-IMU

for different accelerometer qualities and array configurations.

3.9 Chapter Summary

This chapter began with defining the reading of an individual accelerometer

given a specific location and alignment vector in reference to the GF-IMU body frame.

From this, we derived the system used to relate the accelerometer measurements to

the desired linear and angular accelerations a and ω̇. This system allowed us to

determine the conditions for geometric optimality, namely, the condition number of

the regressor matrix H and the Dilution of Precision terms of that same matrix.

Next, the mechanization for a GF-IMU was developed using the previously defined

system. Finally, the mechanization equations were perturbed with error terms and a

set of error equations were developed which could be used in the implementation of

GF-IMU aiding.
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IV. Results and Analysis

4.1 Overview and Objective

Matlab R© was used to simulate the operation of a stationary GF-IMU in order

to observe the impact of accelerometer grade and GF-IMU geometry on the estimated

performance of a GF-IMU. The measurements of the accelerometers making up the

GF-IMU are corrupted by random biases, with the goal to observe how far the GF-INS

navigation solution wanders from truth for a set amount of time using a certain grade

of accelerometers and GF-IMU configuration. The GF-IMU mechanization equations

are propagated forward using simulated inputs from accelerometers corrupted by a

stable bias. Several GF-IMU accelerometer configurations are tested to allow com-

parison. The objective of the simulations is to show a proof-of-concept for the theory

presented thus far and obtain some “rules of thumb” regarding accelerometer quality,

GF-IMU geometry, accelerometer spacing, and performance. The primary questions

are:

• Is the accelerometer quality vs. performance relationship linear? For exam-

ple, do accelerometers with an order of magnitude higher bias values degrade

performance by an order of magnitude?

• What insights can be gained by varying the GF-IMU geometry, and do the

results support the theory?

• What effect does the GF-IMU array size have on the performance? For example,

does doubling the size of the array halve the resultant error magnitude?

In the first set of tests, three separate GF-IMU geometries previously examined in

Chapter 3 will be investigated, using five separate grades of accelerometers and a

fixed array spacing. In the second set of tests, a single GF-IMU geometry will be

investigated using a single grade of accelerometer and a set of five different array

sizes.
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4.2 Methodology

4.2.1 Simulation Description. The following assumptions are made:

• The GF-IMU mechanization equations are resolved in the ECEF frame

• A spherical earth is assumed, rotating at 15o/hour

• The INS is located at 0 degrees latitude and longitude

• The radius of the earth is given as 6371387 m.

Therefore, the true location of the INS resolved in the ECEF frame is

re
0 =


0

0

6371387

m

The geometry of a GF-IMU is defined as in Chapter 3 by the D and R matrices

describing the position and sensing directions of the accelerometers relative to the

center of the GF-IMU and resolved in the body frame. From this geometry description,

the H and A matrices can be quickly calculated by computer. The state vector is

initialized according to a stationary IMU. The attitude is aligned with the X axis in

the ECEF frame, so that the GF-IMU is pointing away from the center of the earth,

as in a rocket set to launch perpendicular to the earth’s surface. Thus the initial Ce
b

DCM is set to:

Ce
b0

=


1 0 0

0 1 0

0 0 1


The inertial angular rate is initialized based on earth rotation. The velocity is initial-

ized at zero. Thus the initial state vector is set to:
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x0 =



Initial Angular Velocity (rad/sec)

. . . . . . . . .

Initial Attitude (rad)

. . . . . . . . .

Initial Velocity (m/sec)

. . . . . . . . .

Initial Position (m)



=



0
0

ΩE

. . .
0
0
0
. . .
0
0
0
. . .

6378137
0
0


The true states of the stationary IMU do not change. However, due to ac-

celerometer biases, the calculated navigation states based on the measurements will

accumulate errors, which are defined by:

State Error = Calculated States− True States

The forward propagation is accomplished using the simple Euler algorithm, with

a time step of 0.01 seconds. That is, each timestep the mechanization equations are

used to calculate the ẋ vector. More complex forms of propagation yielded insignifi-

cant improvements for vastly longer computation times. The updated states are then

calculated as:

x(new) = x(old) + ẋ · 0.01sec

Attitude is not directly propagated by the mechanization equations. Instead the

Body-to-ECEF DCM is propagated, and the attitude states are backed out each time

step using this DCM.

4.2.2 Simulation Parameters. The flexible set of simulation variables encom-

passes those values which can be varied to test different scenarios. The list includes:
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10µg High Quality Navigation Grade
100µg Low Quality Navigation Grade
500µg Tactical Grade
1mg HG1940 MEMS Grade (future)
9mg HG1900 MEMS Grade (current)

Table 4.1: Accelerometer Grade Bias Values

1. The number of Monte Carlo runs

2. The length of each Monte Carlo run, in seconds

3. The R and D matrices describing the geometry used

4. The accelerometer bias variance. Each accelerometer produces measurements

corrupted by a randomly generated bias which remains constant during the

Monte Carlo run. The bias is generated according to the Gaussian probability

function N(0, σ2), where σ2 represents the accelerometer quality level

5. The size of the GF-IMU, i.e. the distance of the accelerometers or accelerometer

triads from the origin

By varying these values it is possible to test the effectiveness of different GF-

IMUs geometries using accelerometers of differing qualities.

4.3 Simulation Set 1 Results: Accelerometer Quality Level

A set of 3 geometries are examined, using 5 accelerometer quality levels. The

accelerometer quality levels used are given in Table 4.1 and were derived from [23]

and [11]. Two levels of navigation-grade accelerometers are used, along with one level

of tactical-grade. The HG1900 is a MEMS IMU developed by Honeywell, currently in

limited production and use, and has a turn-on bias stability of approximately 9 mg [9].

The HG1940 is a future MEMS IMU currently under development, the approximate

specifications of which have been released [9]. In the interest of simplicity, and due

to the fact that bias is the dominant error characteristic of accelerometers, no other

accelerometer errors are modelled.
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4.3.1 Ideal Cube Configuration 1, ‘Straight Cube’.

4.3.1.1 Configuration Description. It is first desired to test a basic

cube configuration, utilizing 6 accelerometers, as previously seen in Section 3.4.1. The

condition number of the H matrix for this configuration was 1, indicating that the

accelerometers are ideally positioned to obtain the maximum amount of information

about both the angular rotation and the translational acceleration of the body frame.

For each Monte Carlo run, a different set of accelerometer biases are generated. 100

total Monte Carlo runs were executed, and the absolute value of the errors averaged

(otherwise the error would be zero-mean and the results meaningless). The results

are displayed in table form as follows:

Figure 4.1: Cube Configuration #1
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4.3.1.2 Cube Configuration Simulation Results.

0.01 mg, High Quality Navigation Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.0047 0.0108 0.0144 0.0198

Final attitude error (deg) 0.0356 0.1618 0.2269 0.5923

Final position error (m) 0.1572 2.8793 13.37 42.4

0.1 mg, Low Quality Navigation Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.0463 0.0989 0.01498 0.1927

Final attitude error (deg) 0.3483 1.4820 3.3541 6.023

Final position error (m) 1.6074 26.78 135.3 408.11

0.5 mg, Tactical Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.2444 0.4917 0.8271 DIV

Final attitude error (deg) 1.83 7.41 17.27 DIV

Final position error (m) 7.99 131.5 699.7 DIV

(Simulation diverged after approx. 53 seconds)

1 mg, High Quality MEMS Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.4884 1.251 2.1459 DIV

Final attitude error (deg) 3.67 15.5133 33.5 DIV

Final position error (m) 16.9 268.8 1223 DIV

(Simulation diverged after approx. 48 seconds)
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9 mg, Low Quality MEMS Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 7.15 DIV DIV DIV

Final attitude error (deg) 35.15 DIV DIV DIV

Final position error (m) 145.3 DIV DIV DIV

4.3.2 Ideal Cube Extension.

4.3.2.1 Configuration Description. The initial cube configuration is

now extended by the addition of a triad of accelerometers at the origin. This triad

yields additional translational acceleration measurements but no angular rate mea-

surements.

Figure 4.2: 9 Accelerometer Configuration with Triad at Center
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4.3.2.2 Cube with Triad at Center Simulation Results.

0.01 mg, High Quality Navigation Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.0048 0.0102 .0143 0.0191

Final attitude error (deg) 0.0357 0.1533 0.3221 0.5733

Final position error (m) 0.165 2.7 12.83 42.79

0.1 mg, Low Quality Navigation Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.0459 0.0925 0.1375 0.2091

Final attitude error (deg) 0.3443 1.3867 3.0833 6.1867

Final position error (m) 1.595 25.82 131.43 431.2

0.5 mg, Tactical Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.2643 0.5142 0.7353 1.2241

Final attitude error (deg) 1.975 7.61 15.58 29.26

Final position error (m) 9.2 139.4 662.0 1964

1 mg, High Quality MEMS Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.4911 1.0027 2.2774 DIV

Final attitude error (deg) 3.6593 14.771 33.303 DIV

Final position error (m) 15.94 265.0 1330 DIV

Simulation diverged after approx. 48 seconds

9 mg, Low Quality MEMS Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 8.9842 DIV DIV DIV

Final attitude error (deg) 33.92 DIV DIV DIV

Final position error (m) 154.6 DIV DIV DIV

(Simulation diverged after approx. 18 seconds)
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4.3.3 3 Accelerometer Triads.

4.3.3.1 Configuration Description. This configuration is constructed

using three accelerometer triads, arranged on a plane equally distant from a center

point and from each other, thus forming an equidistant triangle.

Figure 4.3: 3 Accelerometer Triads
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4.3.3.2 Three-Triad Configuration Simulation Results.

0.01 mg, High Quality Navigation Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.0046 0.0092 0.0155 0.0205

Final attitude error (deg) 0.0346 0.1382 0.3485 0.6160

Final position error (m) 0.1506 2.400 13.14 41.49

0.1 mg, Low Quality Navigation Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.0518 0.1020 0.1591 0.2104

Final attitude error (deg) 0.3888 1.588 3.574 6.2818

Final position error (m) 1.739 26.73 139.8 450.1

0.5 mg, Tactical Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.2395 0.5332 0.8057 1.008

Final attitude error (deg) 1.801 8.022 18.36 30.53

Final position error (m) 8.031 140.7 698.9 2060

1 mg, High Quality MEMS Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.4911 1.110 1.450 1.767

Final attitude error (deg) 3.665 15.17 32.99 39.97

Final position error (m) 17.06 255.7 1294 3511

9 mg, Low Quality MEMS Grade

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 4.231 8.064 9.887 11.725

Final attitude error (deg) 32.29 35.77 36.78 37.87

Final position error (m) 139.3 1701 4936 10860

Simulation displayed very odd characteristics after about 30 seconds
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4.4 Simulation Set 2 Results: GF-IMU Array Size

4.4.1 Test Description. This set of tests is designed to observe the impact of

the geometric size of the GF-IMU array on the performance of the GF-IMU. The as-

sumption is that larger arrays will produce more accurate angular rate measurements

due to the larger accelerometer arm-length.

The basic GF-IMU cube geometry is used, and the size is varied based on the

size of rigid airframe available in various applications.

1.5 meters Large aircraft, i.e. bomber or transport
0.5 meter Small aircraft, i.e. fighter

10 cm Very small aircraft, i.e. UAV
5 cm Missile, i.e. air-to-air missile

Table 4.2: GF-IMU size (approximate radius of array)
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4.4.2 Varying Lever-arm Simulation Results.

1.5 m spacing (large aircraft)

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.0321 0.0647 0.1006 0.1341

Final attitude error (deg) 0.2411 0.9693 2.2579 3.975

Final position error (m) 1.10 17.93 91.54 293.9

0.5 meter spacing (small aircraft)

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.0997 0.1978 0.3086 0.4013

Final attitude error (deg) 0.748 2.969 6.826 11.68

Final position error (m) 3.415 51.61 272.5 823.6

10 cm spacing (UAV)

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.4999 0.9828 DIV DIV

Final attitude error (deg) 3.724 14.53 DIV DIV

Final position error (m) 16.69 252.8 DIV DIV

5 cm spacing (missile)

Length of run (sec) 15 30 45 60

Final angular rate error (deg/sec) 0.9645 3.220 DIV DIV

Final attitude error (deg) 7.1915 33.49 DIV DIV

Final position error (m) 33.46 547.06 DIV DIV

Simulation diverged after approx. 35 seconds

4.5 Analysis

4.5.1 Interpreting the Results. Inertial navigation is extremely trajectory-

dependent. It is very important to note that an IMU stationary with respect to the
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ECEF frame is in fact moving with respect to the inertial frame. This results in uneven

error characteristics, specifically with reference to velocity and position. Positioning

the GF-IMU on the X axis resulted in a smaller positional error term along that axis.

When the GF-IMU was positioned on the Y axis instead, a similar characteristic was

observed with a smaller positional error term along the Y axis. This can be observed

in the error growth figures, which demonstrates the characteristic in the position

growth plots. The X term in those plots is on average an order of magnitude smaller

than the Y or Z terms.

4.5.1.1 Relationship between sensor quality and GF-IMU performance.

It can be observed that, with some statistical deviation, the relationship between

accelerometer bias and error terms can be approximated as linear under the strict

assumptions of this simulation. Accelerometers 10 times worse are likely to diverge

10 times as quickly.

4.5.1.2 Relationship between geometry and performance. In comparing

the performance of the cube configuration in Section 4.3.1 with that of the cube

extension in Section 4.3.2, it is obvious that the addition of an accelerometer triad

at the origin has virtually no effect on performance. Since attitude is the primary

limiting factor in a strapdown IMU, and a triad located at the origin contributes

nothing toward attitude measurements, this is a reasonable result. Thus the resulting

performance is not worth the the added complexity of the additional triad.

The configuration consisting of three accelerometer triads equally spaced from

the origin in Section 4.3.3 yielded much more interesting results. In comparison to

the cube configuration and utilizing high-grade accelerometers, the triad configuration

performed comparably, if slightly worse. However, using lower-grade accelerometers,

the triad configuration displayed odd behavior in the angular rate error states, seeming

to diverge at a much slower rate after approximately 30 seconds, and at times the

error actually appeared to decrease slightly. The resulting position error growth was

thus bounded and did not catastrophically diverge as it did in the cube configuration.
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The reason for this behavior is not known at this time. It is assumed that, with

9 accelerometers contributing to the angular rate measurements, there would be an

“averaging” effect which would reduce the impact of the accelerometer biases over

multiple Monte Carlo runs. However, this does not explain the change in the error

growth rate of the angular rate state, which remains linear in both other configura-

tions. This result is possibly the result of an unknown numerics or software error.

If not, it is possible that a GF-IMU constructed using at least three accelerometer

triads, and thus having more than the minimum six accelerometers measuring angular

rate, exhibits an a resistance to divergence that is not displayed by either of the cube

configurations simulated.

4.5.1.3 The effect of array size. Observing the results of modifying the

array size, there appears to be a direct linear relationship between the spacing of the

accelerometers from the origin and the GF-IMU performance, within the limited error

model examined in these simulations. This is unsurprising as the accelerometer arm-

length directly contributes to the magnitude of the angular rate measurement, which

allows this measurement to overpower the bias value, increasing the Signal-to-Noise

Ratio.

4.5.2 Effect of Gravity Error on a GF-IMU. In a conventional strapdown

IMU, the gyroscopes, and thus the propagation of the Ce
b matrix, are completely

independent of the gravity calculations. Thus, even if position information becomes

completely useless, the attitude calculations can still be maintained. However, in a

GF-IMU, the attitude calculation is dependent on the measurements of accelerometers

and thus is dependent on the gravity calculation. Attitude information already de-

grades an order of magnitude faster due to the additional integration of accelerometer

measurement errors. In addition, it degrades further over time due to its dependence

on the accuracy of position measurements for the gravity calculation. The net result

is that, unlike in a conventional INS, gravity corrupts the attitude states of a GF-IMU

over time.
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4.5.3 Error Growth Rates. The introduction of three additional states and

an additional integration has the effect of increasing the error growth rate exponen-

tially. This can be observed in Figures 4.4, 4.5, 4.6, and 4.7, which show average

error magnitude of each state plotted vs time, as a result of 100 Monte Carlo runs .

It can be seen that the angular rate error grows proportional to time t, the attitude

error grows proportional to t2, velocity to t3, and position to t4.
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Figure 4.4: Illustration of Angular Rate Error Growth

Figure 4.5: Illustration of Attitude Error Growth
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Figure 4.6: Illustration of Velocity Error Growth

Figure 4.7: Illustration of Position Error Growth

4-17



4.6 Brief Summary

These simulations have functioned as a proof-of-concept for a GF-IMU mech-

anization. They have demonstrated and validated the estimated error growth char-

acteristics, as well as the qualitative performance estimates based on the condition

number of the regressor matrix and the DOP terms defined in Chapter 3. These

simulations represent only a minor incursion into the possibilities for simulating a

GF-IMU. Future simulations can and should include investigation of the state means

and covariances, integration of gyroscope measurements, and introduction of a tra-

jectory.
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V. Conclusions

5.1 Summary of Results

This researched has investigated the optimal geometry of a GF-IMU in which

an array of accelerometers is used to measure translational and angular acceleration.

A linear regression in the acceleration and angular acceleration has been derived.

Criteria for scoring different candidate configurations against each other were estab-

lished: the regressor matrix condition number and the three DOP metrics. Various

configurations were developed using the geometry of the Platonic solids and tested

using these criteria.

Both six-accelerometer cube configurations, Figures 3.1 and 3.2, yielded κ(H)

values of 1. A sample third configuration, the tetrahedron configuration in Figure 3.3,

yielded a suboptimal result. Hamiltonian path configurations were also considered;

some configurations were unusable, and those that were had a suboptimal κ(H) of 2.

Configurations of nine accelerometers were then considered. The cube configuration

was extended by the addition of a triad of accelerometers at the origin; the GDOP

was lowered due to the additional measurements, but κ(H) became larger because

the triad at the origin could not contribute to the angular rate measurements. A

non-symmetrical distributed 9 accelerometer configuration produced a suboptimal

regressor matrix. Finally, a configuration made up of three accelerometer triads was

constructed, applying the principles of optimality thus discovered.

Observing these results, two patterns behind optimality emerge very clearly.

The first is the necessity of symmetry in both accelerometer locations and orientations,

most easily demonstrated by assuring that the rows of the R and D matrices, which

describe column by column the position and orientation vectors of each accelerometer,

sum to zero. Secondly, the maximum degree of orthogonality is desired between

the r and d vectors describing the normalized position and the orientation of each

individual accelerometer, thus maximizing the results of the cross product between

the two vectors. Normalized r vectors < 1, i.e. those not located on the surface of
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a unit sphere, will reduce the magnitude of this cross product and thus result in a

larger κ(H), thus indicating an inferior geometry.

The optimal geometry for accelerometer positioning can be thus summarized:

The accelerometers should be:

1. Equally spaced from the origin of the body frame

2. Positioned for maximum symmetry about all three axes

3. Oriented so that the sensing direction is fully orthogonal to the position vector

for each accelerometer.

For configurations of 6, 8, 12, and 20 accelerometers, it can be projected that the

optimal locations are defined using the Platonic solids as earlier described.

In the design of a real-life system, these theoretical considerations regarding

geometry must be balanced with numerous other considerations pertaining to arm-

lengths, ruggedness, reliability, etc. For example, the geometry may be restricted by

an oddly shaped airframe, or stretched to allow larger lever-arms in some directions

than others so as to make better use of available space/rigidity. The theory developed

here provides a sound basis from which to design the geometry of a GF-IMU with a

full understanding of its mechanics of operation.

5.2 Application of Results

The application of GF-IMU theory presents a different method of constructing

an aided INS. The unaided GF-IMU consists of the 6 or more accelerometers needed

to resolve the linear and angular accelerations of the body frame completely, thus

providing a set of measurements of the angular acceleration and acceleration. Addi-

tional measurements can then be introduced and optimally combined to produce a

more accurate navigation system. If full IMUs are used to construct the GF-IMU, the

gyroscope measurements about each axis can be averaged and then treated as direct

measurements of the angular rate states.
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Figure 5.1: Diagram of Gyroscope Aiding

The resultant system therefore derives its angular rotation from a combination

of the angular acceleration measurements provided by the GF-IMU and the average

of the rate gyro measurements. The angular rate measurements are thus somewhat

improved from the individual IMU measurements. Although this development has

been accomplished with MEMS in mind, it is in no way limited to use with low-quality

IMUs. Any system which utilizes multiple IMUs can benefit from the application of

this theory.

5.3 Future Work

This research has only scraped the surface of simulating and estimating the per-

formance of a GF-IMU. Using the groundwork laid in this thesis, the next logical step

is the development of a more complex and realistic navigation filter implementation,

allowing for the optimal combination of gyroscope measurements with the GF-IMU

states. This can be accomplished using a simple Kappa-type or Alpha -type filter

or a more complex Kalman filter capable of also combining GPS measurements and

accounting for error characteristics. Using this filter and a more refined error model as

well as a variety of aircraft trajectories, it would be possible to gain a more accurate

understanding of the potential performance gained. If the results are promising, it

would then be possible to then construct a prototype to run real-life tests.
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